/* sici.c * * Sine and cosine integrals * * * * SYNOPSIS: * * double x, Ci, Si, sici(); * * sici( x, &Si, &Ci ); * * * DESCRIPTION: * * Evaluates the integrals * * x * - * | cos t - 1 * Ci(x) = eul + ln x + | --------- dt, * | t * - * 0 * x * - * | sin t * Si(x) = | ----- dt * | t * - * 0 * * where eul = 0.57721566490153286061 is Euler's constant. * The integrals are approximated by rational functions. * For x > 8 auxiliary functions f(x) and g(x) are employed * such that * * Ci(x) = f(x) sin(x) - g(x) cos(x) * Si(x) = pi/2 - f(x) cos(x) - g(x) sin(x) * * * ACCURACY: * Test interval = [0,50]. * Absolute error, except relative when > 1: * arithmetic function # trials peak rms * IEEE Si 30000 4.4e-16 7.3e-17 * IEEE Ci 30000 6.9e-16 5.1e-17 */ /* * Cephes Math Library Release 2.1: January, 1989 * Copyright 1984, 1987, 1989 by Stephen L. Moshier * Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include #include #include "mconf.h" static double SN[] = { -8.39167827910303881427E-11, 4.62591714427012837309E-8, -9.75759303843632795789E-6, 9.76945438170435310816E-4, -4.13470316229406538752E-2, 1.00000000000000000302E0, }; static double SD[] = { 2.03269266195951942049E-12, 1.27997891179943299903E-9, 4.41827842801218905784E-7, 9.96412122043875552487E-5, 1.42085239326149893930E-2, 9.99999999999999996984E-1, }; static double CN[] = { 2.02524002389102268789E-11, -1.35249504915790756375E-8, 3.59325051419993077021E-6, -4.74007206873407909465E-4, 2.89159652607555242092E-2, -1.00000000000000000080E0, }; static double CD[] = { 4.07746040061880559506E-12, 3.06780997581887812692E-9, 1.23210355685883423679E-6, 3.17442024775032769882E-4, 5.10028056236446052392E-2, 4.00000000000000000080E0, }; static double FN4[] = { 4.23612862892216586994E0, 5.45937717161812843388E0, 1.62083287701538329132E0, 1.67006611831323023771E-1, 6.81020132472518137426E-3, 1.08936580650328664411E-4, 5.48900223421373614008E-7, }; static double FD4[] = { /* 1.00000000000000000000E0, */ 8.16496634205391016773E0, 7.30828822505564552187E0, 1.86792257950184183883E0, 1.78792052963149907262E-1, 7.01710668322789753610E-3, 1.10034357153915731354E-4, 5.48900252756255700982E-7, }; static double FN8[] = { 4.55880873470465315206E-1, 7.13715274100146711374E-1, 1.60300158222319456320E-1, 1.16064229408124407915E-2, 3.49556442447859055605E-4, 4.86215430826454749482E-6, 3.20092790091004902806E-8, 9.41779576128512936592E-11, 9.70507110881952024631E-14, }; static double FD8[] = { /* 1.00000000000000000000E0, */ 9.17463611873684053703E-1, 1.78685545332074536321E-1, 1.22253594771971293032E-2, 3.58696481881851580297E-4, 4.92435064317881464393E-6, 3.21956939101046018377E-8, 9.43720590350276732376E-11, 9.70507110881952025725E-14, }; static double GN4[] = { 8.71001698973114191777E-2, 6.11379109952219284151E-1, 3.97180296392337498885E-1, 7.48527737628469092119E-2, 5.38868681462177273157E-3, 1.61999794598934024525E-4, 1.97963874140963632189E-6, 7.82579040744090311069E-9, }; static double GD4[] = { /* 1.00000000000000000000E0, */ 1.64402202413355338886E0, 6.66296701268987968381E-1, 9.88771761277688796203E-2, 6.22396345441768420760E-3, 1.73221081474177119497E-4, 2.02659182086343991969E-6, 7.82579218933534490868E-9, }; static double GN8[] = { 6.97359953443276214934E-1, 3.30410979305632063225E-1, 3.84878767649974295920E-2, 1.71718239052347903558E-3, 3.48941165502279436777E-5, 3.47131167084116673800E-7, 1.70404452782044526189E-9, 3.85945925430276600453E-12, 3.14040098946363334640E-15, }; static double GD8[] = { /* 1.00000000000000000000E0, */ 1.68548898811011640017E0, 4.87852258695304967486E-1, 4.67913194259625806320E-2, 1.90284426674399523638E-3, 3.68475504442561108162E-5, 3.57043223443740838771E-7, 1.72693748966316146736E-9, 3.87830166023954706752E-12, 3.14040098946363335242E-15, }; extern double MACHEP; int sici(x, si, ci) double x; double *si, *ci; { double z, c, s, f, g; short sign; if (x < 0.0) { sign = -1; x = -x; } else sign = 0; if (x == 0.0) { *si = 0.0; *ci = -NPY_INFINITY; return (0); } if (x > 1.0e9) { if (cephes_isinf(x)) { if (sign == -1) { *si = -NPY_PI_2; *ci = NPY_NAN; } else { *si = NPY_PI_2; *ci = 0; } return 0; } *si = NPY_PI_2 - cos(x) / x; *ci = sin(x) / x; } if (x > 4.0) goto asympt; z = x * x; s = x * polevl(z, SN, 5) / polevl(z, SD, 5); c = z * polevl(z, CN, 5) / polevl(z, CD, 5); if (sign) s = -s; *si = s; *ci = NPY_EULER + log(x) + c; /* real part if x < 0 */ return (0); /* The auxiliary functions are: * * * *si = *si - NPY_PI_2; * c = cos(x); * s = sin(x); * * t = *ci * s - *si * c; * a = *ci * c + *si * s; * * *si = t; * *ci = -a; */ asympt: s = sin(x); c = cos(x); z = 1.0 / (x * x); if (x < 8.0) { f = polevl(z, FN4, 6) / (x * p1evl(z, FD4, 7)); g = z * polevl(z, GN4, 7) / p1evl(z, GD4, 7); } else { f = polevl(z, FN8, 8) / (x * p1evl(z, FD8, 8)); g = z * polevl(z, GN8, 8) / p1evl(z, GD8, 9); } *si = NPY_PI_2 - f * c - g * s; if (sign) *si = -(*si); *ci = f * s - g * c; return (0); }