/* shichi.c * * Hyperbolic sine and cosine integrals * * * * SYNOPSIS: * * double x, Chi, Shi, shichi(); * * shichi( x, &Chi, &Shi ); * * * DESCRIPTION: * * Approximates the integrals * * x * - * | | cosh t - 1 * Chi(x) = eul + ln x + | ----------- dt, * | | t * - * 0 * * x * - * | | sinh t * Shi(x) = | ------ dt * | | t * - * 0 * * where eul = 0.57721566490153286061 is Euler's constant. * The integrals are evaluated by power series for x < 8 * and by Chebyshev expansions for x between 8 and 88. * For large x, both functions approach exp(x)/2x. * Arguments greater than 88 in magnitude return NPY_INFINITY. * * * ACCURACY: * * Test interval 0 to 88. * Relative error: * arithmetic function # trials peak rms * IEEE Shi 30000 6.9e-16 1.6e-16 * Absolute error, except relative when |Chi| > 1: * IEEE Chi 30000 8.4e-16 1.4e-16 */ /* * Cephes Math Library Release 2.0: April, 1987 * Copyright 1984, 1987 by Stephen L. Moshier * Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include "mconf.h" /* x exp(-x) shi(x), inverted interval 8 to 18 */ static double S1[] = { 1.83889230173399459482E-17, -9.55485532279655569575E-17, 2.04326105980879882648E-16, 1.09896949074905343022E-15, -1.31313534344092599234E-14, 5.93976226264314278932E-14, -3.47197010497749154755E-14, -1.40059764613117131000E-12, 9.49044626224223543299E-12, -1.61596181145435454033E-11, -1.77899784436430310321E-10, 1.35455469767246947469E-9, -1.03257121792819495123E-9, -3.56699611114982536845E-8, 1.44818877384267342057E-7, 7.82018215184051295296E-7, -5.39919118403805073710E-6, -3.12458202168959833422E-5, 8.90136741950727517826E-5, 2.02558474743846862168E-3, 2.96064440855633256972E-2, 1.11847751047257036625E0 }; /* x exp(-x) shi(x), inverted interval 18 to 88 */ static double S2[] = { -1.05311574154850938805E-17, 2.62446095596355225821E-17, 8.82090135625368160657E-17, -3.38459811878103047136E-16, -8.30608026366935789136E-16, 3.93397875437050071776E-15, 1.01765565969729044505E-14, -4.21128170307640802703E-14, -1.60818204519802480035E-13, 3.34714954175994481761E-13, 2.72600352129153073807E-12, 1.66894954752839083608E-12, -3.49278141024730899554E-11, -1.58580661666482709598E-10, -1.79289437183355633342E-10, 1.76281629144264523277E-9, 1.69050228879421288846E-8, 1.25391771228487041649E-7, 1.16229947068677338732E-6, 1.61038260117376323993E-5, 3.49810375601053973070E-4, 1.28478065259647610779E-2, 1.03665722588798326712E0 }; /* x exp(-x) chin(x), inverted interval 8 to 18 */ static double C1[] = { -8.12435385225864036372E-18, 2.17586413290339214377E-17, 5.22624394924072204667E-17, -9.48812110591690559363E-16, 5.35546311647465209166E-15, -1.21009970113732918701E-14, -6.00865178553447437951E-14, 7.16339649156028587775E-13, -2.93496072607599856104E-12, -1.40359438136491256904E-12, 8.76302288609054966081E-11, -4.40092476213282340617E-10, -1.87992075640569295479E-10, 1.31458150989474594064E-8, -4.75513930924765465590E-8, -2.21775018801848880741E-7, 1.94635531373272490962E-6, 4.33505889257316408893E-6, -6.13387001076494349496E-5, -3.13085477492997465138E-4, 4.97164789823116062801E-4, 2.64347496031374526641E-2, 1.11446150876699213025E0 }; /* x exp(-x) chin(x), inverted interval 18 to 88 */ static double C2[] = { 8.06913408255155572081E-18, -2.08074168180148170312E-17, -5.98111329658272336816E-17, 2.68533951085945765591E-16, 4.52313941698904694774E-16, -3.10734917335299464535E-15, -4.42823207332531972288E-15, 3.49639695410806959872E-14, 6.63406731718911586609E-14, -3.71902448093119218395E-13, -1.27135418132338309016E-12, 2.74851141935315395333E-12, 2.33781843985453438400E-11, 2.71436006377612442764E-11, -2.56600180000355990529E-10, -1.61021375163803438552E-9, -4.72543064876271773512E-9, -3.00095178028681682282E-9, 7.79387474390914922337E-8, 1.06942765566401507066E-6, 1.59503164802313196374E-5, 3.49592575153777996871E-4, 1.28475387530065247392E-2, 1.03665693917934275131E0 }; static double hyp3f0(double a1, double a2, double a3, double z); /* Sine and cosine integrals */ extern double MACHEP; int shichi(x, si, ci) double x; double *si, *ci; { double k, z, c, s, a, b; short sign; if (x < 0.0) { sign = -1; x = -x; } else sign = 0; if (x == 0.0) { *si = 0.0; *ci = -NPY_INFINITY; return (0); } if (x >= 8.0) goto chb; if (x >= 88.0) goto asymp; z = x * x; /* Direct power series expansion */ a = 1.0; s = 1.0; c = 0.0; k = 2.0; do { a *= z / k; c += a / k; k += 1.0; a /= k; s += a / k; k += 1.0; } while (fabs(a / s) > MACHEP); s *= x; goto done; chb: /* Chebyshev series expansions */ if (x < 18.0) { a = (576.0 / x - 52.0) / 10.0; k = exp(x) / x; s = k * chbevl(a, S1, 22); c = k * chbevl(a, C1, 23); goto done; } if (x <= 88.0) { a = (6336.0 / x - 212.0) / 70.0; k = exp(x) / x; s = k * chbevl(a, S2, 23); c = k * chbevl(a, C2, 24); goto done; } asymp: if (x > 1000) { *si = NPY_INFINITY; *ci = NPY_INFINITY; } else { /* Asymptotic expansions * http://functions.wolfram.com/GammaBetaErf/CoshIntegral/06/02/ * http://functions.wolfram.com/GammaBetaErf/SinhIntegral/06/02/0001/ */ a = hyp3f0(0.5, 1, 1, 4.0/(x*x)); b = hyp3f0(1, 1, 1.5, 4.0/(x*x)); *si = cosh(x)/x * a + sinh(x)/(x*x) * b; *ci = sinh(x)/x * a + cosh(x)/(x*x) * b; } if (sign) { *si = -*si; } return 0; done: if (sign) s = -s; *si = s; *ci = NPY_EULER + log(x) + c; return (0); } /* * Evaluate 3F0(a1, a2, a3; z) * * The series is only asymptotic, so this requires z large enough. */ static double hyp3f0(double a1, double a2, double a3, double z) { int n, maxiter; double err, sum, term, m; m = pow(z, -1.0/3); if (m < 50) { maxiter = m; } else { maxiter = 50; } term = 1.0; sum = term; for (n = 0; n < maxiter; ++n) { term *= (a1 + n) * (a2 + n) * (a3 + n) * z / (n + 1); sum += term; if (fabs(term) < 1e-13 * fabs(sum) || term == 0) { break; } } err = fabs(term); if (err > 1e-13 * fabs(sum)) { return NPY_NAN; } return sum; }