/* * Pochhammer symbol (a)_m = gamma(a + m) / gamma(a) */ #include "mconf.h" static double is_nonpos_int(double x) { return x <= 0 && x == ceil(x) && fabs(x) < 1e13; } double poch(double a, double m) { double r; r = 1.0; /* * 1. Reduce magnitude of `m` to |m| < 1 by using recurrence relations. * * This may end up in over/underflow, but then the function itself either * diverges or goes to zero. In case the remainder goes to the opposite * direction, we end up returning 0*INF = NAN, which is OK. */ /* Recurse down */ while (m >= 1.0) { if (a + m == 1) { break; } m -= 1.0; r *= (a + m); if (!npy_isfinite(r) || r == 0) { break; } } /* Recurse up */ while (m <= -1.0) { if (a + m == 0) { break; } r /= (a + m); m += 1.0; if (!npy_isfinite(r) || r == 0) { break; } } /* * 2. Evaluate function with reduced `m` * * Now either `m` is not big, or the `r` product has over/underflown. * If so, the function itself does similarly. */ if (m == 0) { /* Easy case */ return r; } else if (a > 1e4 && fabs(m) <= 1) { /* Avoid loss of precision */ return r * pow(a, m) * ( 1 + m*(m-1)/(2*a) + m*(m-1)*(m-2)*(3*m-1)/(24*a*a) + m*m*(m-1)*(m-1)*(m-2)*(m-3)/(48*a*a*a) ); } /* Check for infinity */ if (is_nonpos_int(a + m) && !is_nonpos_int(a) && a + m != m) { return NPY_INFINITY; } /* Check for zero */ if (!is_nonpos_int(a + m) && is_nonpos_int(a)) { return 0; } return r * exp(lgam(a + m) - lgam(a)) * gammasgn(a + m) * gammasgn(a); }