/* k0.c * * Modified Bessel function, third kind, order zero * * * * SYNOPSIS: * * double x, y, k0(); * * y = k0( x ); * * * * DESCRIPTION: * * Returns modified Bessel function of the third kind * of order zero of the argument. * * The range is partitioned into the two intervals [0,8] and * (8, infinity). Chebyshev polynomial expansions are employed * in each interval. * * * * ACCURACY: * * Tested at 2000 random points between 0 and 8. Peak absolute * error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15. * Relative error: * arithmetic domain # trials peak rms * IEEE 0, 30 30000 1.2e-15 1.6e-16 * * ERROR MESSAGES: * * message condition value returned * K0 domain x <= 0 NPY_INFINITY * */ /* k0e() * * Modified Bessel function, third kind, order zero, * exponentially scaled * * * * SYNOPSIS: * * double x, y, k0e(); * * y = k0e( x ); * * * * DESCRIPTION: * * Returns exponentially scaled modified Bessel function * of the third kind of order zero of the argument. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0, 30 30000 1.4e-15 1.4e-16 * See k0(). * */ /* * Cephes Math Library Release 2.8: June, 2000 * Copyright 1984, 1987, 2000 by Stephen L. Moshier */ #include "mconf.h" /* Chebyshev coefficients for K0(x) + log(x/2) I0(x) * in the interval [0,2]. The odd order coefficients are all * zero; only the even order coefficients are listed. * * lim(x->0){ K0(x) + log(x/2) I0(x) } = -EUL. */ static double A[] = { 1.37446543561352307156E-16, 4.25981614279661018399E-14, 1.03496952576338420167E-11, 1.90451637722020886025E-9, 2.53479107902614945675E-7, 2.28621210311945178607E-5, 1.26461541144692592338E-3, 3.59799365153615016266E-2, 3.44289899924628486886E-1, -5.35327393233902768720E-1 }; /* Chebyshev coefficients for exp(x) sqrt(x) K0(x) * in the inverted interval [2,infinity]. * * lim(x->inf){ exp(x) sqrt(x) K0(x) } = sqrt(pi/2). */ static double B[] = { 5.30043377268626276149E-18, -1.64758043015242134646E-17, 5.21039150503902756861E-17, -1.67823109680541210385E-16, 5.51205597852431940784E-16, -1.84859337734377901440E-15, 6.34007647740507060557E-15, -2.22751332699166985548E-14, 8.03289077536357521100E-14, -2.98009692317273043925E-13, 1.14034058820847496303E-12, -4.51459788337394416547E-12, 1.85594911495471785253E-11, -7.95748924447710747776E-11, 3.57739728140030116597E-10, -1.69753450938905987466E-9, 8.57403401741422608519E-9, -4.66048989768794782956E-8, 2.76681363944501510342E-7, -1.83175552271911948767E-6, 1.39498137188764993662E-5, -1.28495495816278026384E-4, 1.56988388573005337491E-3, -3.14481013119645005427E-2, 2.44030308206595545468E0 }; double k0(x) double x; { double y, z; if (x == 0.0) { sf_error("k0", SF_ERROR_SINGULAR, NULL); return NPY_INFINITY; } else if (x < 0.0) { sf_error("k0", SF_ERROR_DOMAIN, NULL); return NPY_NAN; } if (x <= 2.0) { y = x * x - 2.0; y = chbevl(y, A, 10) - log(0.5 * x) * i0(x); return (y); } z = 8.0 / x - 2.0; y = exp(-x) * chbevl(z, B, 25) / sqrt(x); return (y); } double k0e(x) double x; { double y; if (x == 0.0) { sf_error("k0e", SF_ERROR_SINGULAR, NULL); return NPY_INFINITY; } else if (x < 0.0) { sf_error("k0e", SF_ERROR_DOMAIN, NULL); return NPY_NAN; } if (x <= 2.0) { y = x * x - 2.0; y = chbevl(y, A, 10) - log(0.5 * x) * i0(x); return (y * exp(x)); } y = chbevl(8.0 / x - 2.0, B, 25) / sqrt(x); return (y); }