/* i1.c * * Modified Bessel function of order one * * * * SYNOPSIS: * * double x, y, i1(); * * y = i1( x ); * * * * DESCRIPTION: * * Returns modified Bessel function of order one of the * argument. * * The function is defined as i1(x) = -i j1( ix ). * * The range is partitioned into the two intervals [0,8] and * (8, infinity). Chebyshev polynomial expansions are employed * in each interval. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0, 30 30000 1.9e-15 2.1e-16 * * */ /* i1e.c * * Modified Bessel function of order one, * exponentially scaled * * * * SYNOPSIS: * * double x, y, i1e(); * * y = i1e( x ); * * * * DESCRIPTION: * * Returns exponentially scaled modified Bessel function * of order one of the argument. * * The function is defined as i1(x) = -i exp(-|x|) j1( ix ). * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0, 30 30000 2.0e-15 2.0e-16 * See i1(). * */ /* i1.c 2 */ /* * Cephes Math Library Release 2.8: June, 2000 * Copyright 1985, 1987, 2000 by Stephen L. Moshier */ #include "mconf.h" /* Chebyshev coefficients for exp(-x) I1(x) / x * in the interval [0,8]. * * lim(x->0){ exp(-x) I1(x) / x } = 1/2. */ static double A[] = { 2.77791411276104639959E-18, -2.11142121435816608115E-17, 1.55363195773620046921E-16, -1.10559694773538630805E-15, 7.60068429473540693410E-15, -5.04218550472791168711E-14, 3.22379336594557470981E-13, -1.98397439776494371520E-12, 1.17361862988909016308E-11, -6.66348972350202774223E-11, 3.62559028155211703701E-10, -1.88724975172282928790E-9, 9.38153738649577178388E-9, -4.44505912879632808065E-8, 2.00329475355213526229E-7, -8.56872026469545474066E-7, 3.47025130813767847674E-6, -1.32731636560394358279E-5, 4.78156510755005422638E-5, -1.61760815825896745588E-4, 5.12285956168575772895E-4, -1.51357245063125314899E-3, 4.15642294431288815669E-3, -1.05640848946261981558E-2, 2.47264490306265168283E-2, -5.29459812080949914269E-2, 1.02643658689847095384E-1, -1.76416518357834055153E-1, 2.52587186443633654823E-1 }; /* Chebyshev coefficients for exp(-x) sqrt(x) I1(x) * in the inverted interval [8,infinity]. * * lim(x->inf){ exp(-x) sqrt(x) I1(x) } = 1/sqrt(2pi). */ static double B[] = { 7.51729631084210481353E-18, 4.41434832307170791151E-18, -4.65030536848935832153E-17, -3.20952592199342395980E-17, 2.96262899764595013876E-16, 3.30820231092092828324E-16, -1.88035477551078244854E-15, -3.81440307243700780478E-15, 1.04202769841288027642E-14, 4.27244001671195135429E-14, -2.10154184277266431302E-14, -4.08355111109219731823E-13, -7.19855177624590851209E-13, 2.03562854414708950722E-12, 1.41258074366137813316E-11, 3.25260358301548823856E-11, -1.89749581235054123450E-11, -5.58974346219658380687E-10, -3.83538038596423702205E-9, -2.63146884688951950684E-8, -2.51223623787020892529E-7, -3.88256480887769039346E-6, -1.10588938762623716291E-4, -9.76109749136146840777E-3, 7.78576235018280120474E-1 }; double i1(x) double x; { double y, z; z = fabs(x); if (z <= 8.0) { y = (z / 2.0) - 2.0; z = chbevl(y, A, 29) * z * exp(z); } else { z = exp(z) * chbevl(32.0 / z - 2.0, B, 25) / sqrt(z); } if (x < 0.0) z = -z; return (z); } /* i1e() */ double i1e(x) double x; { double y, z; z = fabs(x); if (z <= 8.0) { y = (z / 2.0) - 2.0; z = chbevl(y, A, 29) * z; } else { z = chbevl(32.0 / z - 2.0, B, 25) / sqrt(z); } if (x < 0.0) z = -z; return (z); }