/* i0.c * * Modified Bessel function of order zero * * * * SYNOPSIS: * * double x, y, i0(); * * y = i0( x ); * * * * DESCRIPTION: * * Returns modified Bessel function of order zero of the * argument. * * The function is defined as i0(x) = j0( ix ). * * The range is partitioned into the two intervals [0,8] and * (8, infinity). Chebyshev polynomial expansions are employed * in each interval. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0,30 30000 5.8e-16 1.4e-16 * */ /* i0e.c * * Modified Bessel function of order zero, * exponentially scaled * * * * SYNOPSIS: * * double x, y, i0e(); * * y = i0e( x ); * * * * DESCRIPTION: * * Returns exponentially scaled modified Bessel function * of order zero of the argument. * * The function is defined as i0e(x) = exp(-|x|) j0( ix ). * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0,30 30000 5.4e-16 1.2e-16 * See i0(). * */ /* i0.c */ /* * Cephes Math Library Release 2.8: June, 2000 * Copyright 1984, 1987, 2000 by Stephen L. Moshier */ #include "mconf.h" /* Chebyshev coefficients for exp(-x) I0(x) * in the interval [0,8]. * * lim(x->0){ exp(-x) I0(x) } = 1. */ static double A[] = { -4.41534164647933937950E-18, 3.33079451882223809783E-17, -2.43127984654795469359E-16, 1.71539128555513303061E-15, -1.16853328779934516808E-14, 7.67618549860493561688E-14, -4.85644678311192946090E-13, 2.95505266312963983461E-12, -1.72682629144155570723E-11, 9.67580903537323691224E-11, -5.18979560163526290666E-10, 2.65982372468238665035E-9, -1.30002500998624804212E-8, 6.04699502254191894932E-8, -2.67079385394061173391E-7, 1.11738753912010371815E-6, -4.41673835845875056359E-6, 1.64484480707288970893E-5, -5.75419501008210370398E-5, 1.88502885095841655729E-4, -5.76375574538582365885E-4, 1.63947561694133579842E-3, -4.32430999505057594430E-3, 1.05464603945949983183E-2, -2.37374148058994688156E-2, 4.93052842396707084878E-2, -9.49010970480476444210E-2, 1.71620901522208775349E-1, -3.04682672343198398683E-1, 6.76795274409476084995E-1 }; /* Chebyshev coefficients for exp(-x) sqrt(x) I0(x) * in the inverted interval [8,infinity]. * * lim(x->inf){ exp(-x) sqrt(x) I0(x) } = 1/sqrt(2pi). */ static double B[] = { -7.23318048787475395456E-18, -4.83050448594418207126E-18, 4.46562142029675999901E-17, 3.46122286769746109310E-17, -2.82762398051658348494E-16, -3.42548561967721913462E-16, 1.77256013305652638360E-15, 3.81168066935262242075E-15, -9.55484669882830764870E-15, -4.15056934728722208663E-14, 1.54008621752140982691E-14, 3.85277838274214270114E-13, 7.18012445138366623367E-13, -1.79417853150680611778E-12, -1.32158118404477131188E-11, -3.14991652796324136454E-11, 1.18891471078464383424E-11, 4.94060238822496958910E-10, 3.39623202570838634515E-9, 2.26666899049817806459E-8, 2.04891858946906374183E-7, 2.89137052083475648297E-6, 6.88975834691682398426E-5, 3.36911647825569408990E-3, 8.04490411014108831608E-1 }; double i0(x) double x; { double y; if (x < 0) x = -x; if (x <= 8.0) { y = (x / 2.0) - 2.0; return (exp(x) * chbevl(y, A, 30)); } return (exp(x) * chbevl(32.0 / x - 2.0, B, 25) / sqrt(x)); } double i0e(x) double x; { double y; if (x < 0) x = -x; if (x <= 8.0) { y = (x / 2.0) - 2.0; return (chbevl(y, A, 30)); } return (chbevl(32.0 / x - 2.0, B, 25) / sqrt(x)); }