/* fresnl.c * * Fresnel integral * * * * SYNOPSIS: * * double x, S, C; * void fresnl(); * * fresnl( x, _&S, _&C ); * * * DESCRIPTION: * * Evaluates the Fresnel integrals * * x * - * | | * C(x) = | cos(pi/2 t**2) dt, * | | * - * 0 * * x * - * | | * S(x) = | sin(pi/2 t**2) dt. * | | * - * 0 * * * The integrals are evaluated by a power series for x < 1. * For x >= 1 auxiliary functions f(x) and g(x) are employed * such that * * C(x) = 0.5 + f(x) sin( pi/2 x**2 ) - g(x) cos( pi/2 x**2 ) * S(x) = 0.5 - f(x) cos( pi/2 x**2 ) - g(x) sin( pi/2 x**2 ) * * * * ACCURACY: * * Relative error. * * Arithmetic function domain # trials peak rms * IEEE S(x) 0, 10 10000 2.0e-15 3.2e-16 * IEEE C(x) 0, 10 10000 1.8e-15 3.3e-16 */ /* * Cephes Math Library Release 2.1: January, 1989 * Copyright 1984, 1987, 1989 by Stephen L. Moshier * Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include "mconf.h" /* S(x) for small x */ static double sn[6] = { -2.99181919401019853726E3, 7.08840045257738576863E5, -6.29741486205862506537E7, 2.54890880573376359104E9, -4.42979518059697779103E10, 3.18016297876567817986E11, }; static double sd[6] = { /* 1.00000000000000000000E0, */ 2.81376268889994315696E2, 4.55847810806532581675E4, 5.17343888770096400730E6, 4.19320245898111231129E8, 2.24411795645340920940E10, 6.07366389490084639049E11, }; /* C(x) for small x */ static double cn[6] = { -4.98843114573573548651E-8, 9.50428062829859605134E-6, -6.45191435683965050962E-4, 1.88843319396703850064E-2, -2.05525900955013891793E-1, 9.99999999999999998822E-1, }; static double cd[7] = { 3.99982968972495980367E-12, 9.15439215774657478799E-10, 1.25001862479598821474E-7, 1.22262789024179030997E-5, 8.68029542941784300606E-4, 4.12142090722199792936E-2, 1.00000000000000000118E0, }; /* Auxiliary function f(x) */ static double fn[10] = { 4.21543555043677546506E-1, 1.43407919780758885261E-1, 1.15220955073585758835E-2, 3.45017939782574027900E-4, 4.63613749287867322088E-6, 3.05568983790257605827E-8, 1.02304514164907233465E-10, 1.72010743268161828879E-13, 1.34283276233062758925E-16, 3.76329711269987889006E-20, }; static double fd[10] = { /* 1.00000000000000000000E0, */ 7.51586398353378947175E-1, 1.16888925859191382142E-1, 6.44051526508858611005E-3, 1.55934409164153020873E-4, 1.84627567348930545870E-6, 1.12699224763999035261E-8, 3.60140029589371370404E-11, 5.88754533621578410010E-14, 4.52001434074129701496E-17, 1.25443237090011264384E-20, }; /* Auxiliary function g(x) */ static double gn[11] = { 5.04442073643383265887E-1, 1.97102833525523411709E-1, 1.87648584092575249293E-2, 6.84079380915393090172E-4, 1.15138826111884280931E-5, 9.82852443688422223854E-8, 4.45344415861750144738E-10, 1.08268041139020870318E-12, 1.37555460633261799868E-15, 8.36354435630677421531E-19, 1.86958710162783235106E-22, }; static double gd[11] = { /* 1.00000000000000000000E0, */ 1.47495759925128324529E0, 3.37748989120019970451E-1, 2.53603741420338795122E-2, 8.14679107184306179049E-4, 1.27545075667729118702E-5, 1.04314589657571990585E-7, 4.60680728146520428211E-10, 1.10273215066240270757E-12, 1.38796531259578871258E-15, 8.39158816283118707363E-19, 1.86958710162783236342E-22, }; extern double MACHEP; int fresnl(xxa, ssa, cca) double xxa, *ssa, *cca; { double f, g, cc, ss, c, s, t, u; double x, x2; if (cephes_isinf(xxa)) { cc = 0.5; ss = 0.5; goto done; } x = fabs(xxa); x2 = x * x; if (x2 < 2.5625) { t = x2 * x2; ss = x * x2 * polevl(t, sn, 5) / p1evl(t, sd, 6); cc = x * polevl(t, cn, 5) / polevl(t, cd, 6); goto done; } if (x > 36974.0) { /* * http://functions.wolfram.com/GammaBetaErf/FresnelC/06/02/ * http://functions.wolfram.com/GammaBetaErf/FresnelS/06/02/ */ cc = 0.5 + 1/(NPY_PI*x) * sin(NPY_PI*x*x/2); ss = 0.5 - 1/(NPY_PI*x) * cos(NPY_PI*x*x/2); goto done; } /* Asymptotic power series auxiliary functions * for large argument */ x2 = x * x; t = NPY_PI * x2; u = 1.0 / (t * t); t = 1.0 / t; f = 1.0 - u * polevl(u, fn, 9) / p1evl(u, fd, 10); g = t * polevl(u, gn, 10) / p1evl(u, gd, 11); t = NPY_PI_2 * x2; c = cos(t); s = sin(t); t = NPY_PI * x; cc = 0.5 + (f * s - g * c) / t; ss = 0.5 - (f * c + g * s) / t; done: if (xxa < 0.0) { cc = -cc; ss = -ss; } *cca = cc; *ssa = ss; return (0); }