/* cbrt.c * * Cube root * * * * SYNOPSIS: * * double x, y, cbrt(); * * y = cbrt( x ); * * * * DESCRIPTION: * * Returns the cube root of the argument, which may be negative. * * Range reduction involves determining the power of 2 of * the argument. A polynomial of degree 2 applied to the * mantissa, and multiplication by the cube root of 1, 2, or 4 * approximates the root to within about 0.1%. Then Newton's * iteration is used three times to converge to an accurate * result. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0,1e308 30000 1.5e-16 5.0e-17 * */ /* cbrt.c */ /* * Cephes Math Library Release 2.2: January, 1991 * Copyright 1984, 1991 by Stephen L. Moshier * Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include "mconf.h" static double CBRT2 = 1.2599210498948731647672; static double CBRT4 = 1.5874010519681994747517; static double CBRT2I = 0.79370052598409973737585; static double CBRT4I = 0.62996052494743658238361; double cbrt(double x) { int e, rem, sign; double z; if (!cephes_isfinite(x)) return x; if (x == 0) return (x); if (x > 0) sign = 1; else { sign = -1; x = -x; } z = x; /* extract power of 2, leaving * mantissa between 0.5 and 1 */ x = frexp(x, &e); /* Approximate cube root of number between .5 and 1, * peak relative error = 9.2e-6 */ x = (((-1.3466110473359520655053e-1 * x + 5.4664601366395524503440e-1) * x - 9.5438224771509446525043e-1) * x + 1.1399983354717293273738e0) * x + 4.0238979564544752126924e-1; /* exponent divided by 3 */ if (e >= 0) { rem = e; e /= 3; rem -= 3 * e; if (rem == 1) x *= CBRT2; else if (rem == 2) x *= CBRT4; } /* argument less than 1 */ else { e = -e; rem = e; e /= 3; rem -= 3 * e; if (rem == 1) x *= CBRT2I; else if (rem == 2) x *= CBRT4I; e = -e; } /* multiply by power of 2 */ x = ldexp(x, e); /* Newton iteration */ x -= (x - (z / (x * x))) * 0.33333333333333333333; x -= (x - (z / (x * x))) * 0.33333333333333333333; if (sign < 0) x = -x; return (x); }