/* bdtr.c * * Binomial distribution * * * * SYNOPSIS: * * int k, n; * double p, y, bdtr(); * * y = bdtr( k, n, p ); * * DESCRIPTION: * * Returns the sum of the terms 0 through k of the Binomial * probability density: * * k * -- ( n ) j n-j * > ( ) p (1-p) * -- ( j ) * j=0 * * The terms are not summed directly; instead the incomplete * beta integral is employed, according to the formula * * y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ). * * The arguments must be positive, with p ranging from 0 to 1. * * ACCURACY: * * Tested at random points (a,b,p), with p between 0 and 1. * * a,b Relative error: * arithmetic domain # trials peak rms * For p between 0.001 and 1: * IEEE 0,100 100000 4.3e-15 2.6e-16 * See also incbet.c. * * ERROR MESSAGES: * * message condition value returned * bdtr domain k < 0 0.0 * n < k * x < 0, x > 1 */ /* bdtrc() * * Complemented binomial distribution * * * * SYNOPSIS: * * int k, n; * double p, y, bdtrc(); * * y = bdtrc( k, n, p ); * * DESCRIPTION: * * Returns the sum of the terms k+1 through n of the Binomial * probability density: * * n * -- ( n ) j n-j * > ( ) p (1-p) * -- ( j ) * j=k+1 * * The terms are not summed directly; instead the incomplete * beta integral is employed, according to the formula * * y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ). * * The arguments must be positive, with p ranging from 0 to 1. * * ACCURACY: * * Tested at random points (a,b,p). * * a,b Relative error: * arithmetic domain # trials peak rms * For p between 0.001 and 1: * IEEE 0,100 100000 6.7e-15 8.2e-16 * For p between 0 and .001: * IEEE 0,100 100000 1.5e-13 2.7e-15 * * ERROR MESSAGES: * * message condition value returned * bdtrc domain x<0, x>1, n 1 */ /* bdtr() */ /* * Cephes Math Library Release 2.3: March, 1995 * Copyright 1984, 1987, 1995 by Stephen L. Moshier */ #include "mconf.h" #include double bdtrc(double k, int n, double p) { double dk, dn; double fk = floor(k); if (npy_isnan(p) || npy_isnan(k)) { return NPY_NAN; } if (p < 0.0 || p > 1.0 || n < fk) { sf_error("bdtrc", SF_ERROR_DOMAIN, NULL); return NPY_NAN; } if (fk < 0) { return 1.0; } if (fk == n) { return 0.0; } dn = n - fk; if (k == 0) { if (p < .01) dk = -expm1(dn * log1p(-p)); else dk = 1.0 - pow(1.0 - p, dn); } else { dk = fk + 1; dk = incbet(dk, dn, p); } return dk; } double bdtr(double k, int n, double p) { double dk, dn; double fk = floor(k); if (npy_isnan(p) || npy_isnan(k)) { return NPY_NAN; } if (p < 0.0 || p > 1.0 || fk < 0 || n < fk) { sf_error("bdtr", SF_ERROR_DOMAIN, NULL); return NPY_NAN; } if (fk == n) return 1.0; dn = n - fk; if (fk == 0) { dk = pow(1.0 - p, dn); } else { dk = fk + 1.; dk = incbet(dn, dk, 1.0 - p); } return dk; } double bdtri(double k, int n, double y) { double p, dn, dk; double fk = floor(k); if (npy_isnan(k)) { return NPY_NAN; } if (y < 0.0 || y > 1.0 || fk < 0.0 || n <= fk) { sf_error("bdtri", SF_ERROR_DOMAIN, NULL); return NPY_NAN; } dn = n - fk; if (fk == n) return 1.0; if (fk == 0) { if (y > 0.8) { p = -expm1(log1p(y - 1.0) / dn); } else { p = 1.0 - pow(y, 1.0 / dn); } } else { dk = fk + 1; p = incbet(dn, dk, 0.5); if (p > 0.5) p = incbi(dk, dn, 1.0 - y); else p = 1.0 - incbi(dn, dk, y); } return p; }