/* airy.c * * Airy function * * * * SYNOPSIS: * * double x, ai, aip, bi, bip; * int airy(); * * airy( x, _&ai, _&aip, _&bi, _&bip ); * * * * DESCRIPTION: * * Solution of the differential equation * * y"(x) = xy. * * The function returns the two independent solutions Ai, Bi * and their first derivatives Ai'(x), Bi'(x). * * Evaluation is by power series summation for small x, * by rational minimax approximations for large x. * * * * ACCURACY: * Error criterion is absolute when function <= 1, relative * when function > 1, except * denotes relative error criterion. * For large negative x, the absolute error increases as x^1.5. * For large positive x, the relative error increases as x^1.5. * * Arithmetic domain function # trials peak rms * IEEE -10, 0 Ai 10000 1.6e-15 2.7e-16 * IEEE 0, 10 Ai 10000 2.3e-14* 1.8e-15* * IEEE -10, 0 Ai' 10000 4.6e-15 7.6e-16 * IEEE 0, 10 Ai' 10000 1.8e-14* 1.5e-15* * IEEE -10, 10 Bi 30000 4.2e-15 5.3e-16 * IEEE -10, 10 Bi' 30000 4.9e-15 7.3e-16 * */ /* airy.c */ /* * Cephes Math Library Release 2.8: June, 2000 * Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier */ #include "mconf.h" static double c1 = 0.35502805388781723926; static double c2 = 0.258819403792806798405; static double sqrt3 = 1.732050807568877293527; static double sqpii = 5.64189583547756286948E-1; extern double MACHEP; #ifdef UNK #define MAXAIRY 25.77 #endif #ifdef IBMPC #define MAXAIRY 103.892 #endif #ifdef MIEEE #define MAXAIRY 103.892 #endif static double AN[8] = { 3.46538101525629032477E-1, 1.20075952739645805542E1, 7.62796053615234516538E1, 1.68089224934630576269E2, 1.59756391350164413639E2, 7.05360906840444183113E1, 1.40264691163389668864E1, 9.99999999999999995305E-1, }; static double AD[8] = { 5.67594532638770212846E-1, 1.47562562584847203173E1, 8.45138970141474626562E1, 1.77318088145400459522E2, 1.64234692871529701831E2, 7.14778400825575695274E1, 1.40959135607834029598E1, 1.00000000000000000470E0, }; static double APN[8] = { 6.13759184814035759225E-1, 1.47454670787755323881E1, 8.20584123476060982430E1, 1.71184781360976385540E2, 1.59317847137141783523E2, 6.99778599330103016170E1, 1.39470856980481566958E1, 1.00000000000000000550E0, }; static double APD[8] = { 3.34203677749736953049E-1, 1.11810297306158156705E1, 7.11727352147859965283E1, 1.58778084372838313640E2, 1.53206427475809220834E2, 6.86752304592780337944E1, 1.38498634758259442477E1, 9.99999999999999994502E-1, }; static double BN16[5] = { -2.53240795869364152689E-1, 5.75285167332467384228E-1, -3.29907036873225371650E-1, 6.44404068948199951727E-2, -3.82519546641336734394E-3, }; static double BD16[5] = { /* 1.00000000000000000000E0, */ -7.15685095054035237902E0, 1.06039580715664694291E1, -5.23246636471251500874E0, 9.57395864378383833152E-1, -5.50828147163549611107E-2, }; static double BPPN[5] = { 4.65461162774651610328E-1, -1.08992173800493920734E0, 6.38800117371827987759E-1, -1.26844349553102907034E-1, 7.62487844342109852105E-3, }; static double BPPD[5] = { /* 1.00000000000000000000E0, */ -8.70622787633159124240E0, 1.38993162704553213172E1, -7.14116144616431159572E0, 1.34008595960680518666E0, -7.84273211323341930448E-2, }; static double AFN[9] = { -1.31696323418331795333E-1, -6.26456544431912369773E-1, -6.93158036036933542233E-1, -2.79779981545119124951E-1, -4.91900132609500318020E-2, -4.06265923594885404393E-3, -1.59276496239262096340E-4, -2.77649108155232920844E-6, -1.67787698489114633780E-8, }; static double AFD[9] = { /* 1.00000000000000000000E0, */ 1.33560420706553243746E1, 3.26825032795224613948E1, 2.67367040941499554804E1, 9.18707402907259625840E0, 1.47529146771666414581E0, 1.15687173795188044134E-1, 4.40291641615211203805E-3, 7.54720348287414296618E-5, 4.51850092970580378464E-7, }; static double AGN[11] = { 1.97339932091685679179E-2, 3.91103029615688277255E-1, 1.06579897599595591108E0, 9.39169229816650230044E-1, 3.51465656105547619242E-1, 6.33888919628925490927E-2, 5.85804113048388458567E-3, 2.82851600836737019778E-4, 6.98793669997260967291E-6, 8.11789239554389293311E-8, 3.41551784765923618484E-10, }; static double AGD[10] = { /* 1.00000000000000000000E0, */ 9.30892908077441974853E0, 1.98352928718312140417E1, 1.55646628932864612953E1, 5.47686069422975497931E0, 9.54293611618961883998E-1, 8.64580826352392193095E-2, 4.12656523824222607191E-3, 1.01259085116509135510E-4, 1.17166733214413521882E-6, 4.91834570062930015649E-9, }; static double APFN[9] = { 1.85365624022535566142E-1, 8.86712188052584095637E-1, 9.87391981747398547272E-1, 4.01241082318003734092E-1, 7.10304926289631174579E-2, 5.90618657995661810071E-3, 2.33051409401776799569E-4, 4.08718778289035454598E-6, 2.48379932900442457853E-8, }; static double APFD[9] = { /* 1.00000000000000000000E0, */ 1.47345854687502542552E1, 3.75423933435489594466E1, 3.14657751203046424330E1, 1.09969125207298778536E1, 1.78885054766999417817E0, 1.41733275753662636873E-1, 5.44066067017226003627E-3, 9.39421290654511171663E-5, 5.65978713036027009243E-7, }; static double APGN[11] = { -3.55615429033082288335E-2, -6.37311518129435504426E-1, -1.70856738884312371053E0, -1.50221872117316635393E0, -5.63606665822102676611E-1, -1.02101031120216891789E-1, -9.48396695961445269093E-3, -4.60325307486780994357E-4, -1.14300836484517375919E-5, -1.33415518685547420648E-7, -5.63803833958893494476E-10, }; static double APGD[11] = { /* 1.00000000000000000000E0, */ 9.85865801696130355144E0, 2.16401867356585941885E1, 1.73130776389749389525E1, 6.17872175280828766327E0, 1.08848694396321495475E0, 9.95005543440888479402E-2, 4.78468199683886610842E-3, 1.18159633322838625562E-4, 1.37480673554219441465E-6, 5.79912514929147598821E-9, }; int airy(x, ai, aip, bi, bip) double x, *ai, *aip, *bi, *bip; { double z, zz, t, f, g, uf, ug, k, zeta, theta; int domflg; domflg = 0; if (x > MAXAIRY) { *ai = 0; *aip = 0; *bi = NPY_INFINITY; *bip = NPY_INFINITY; return (-1); } if (x < -2.09) { domflg = 15; t = sqrt(-x); zeta = -2.0 * x * t / 3.0; t = sqrt(t); k = sqpii / t; z = 1.0 / zeta; zz = z * z; uf = 1.0 + zz * polevl(zz, AFN, 8) / p1evl(zz, AFD, 9); ug = z * polevl(zz, AGN, 10) / p1evl(zz, AGD, 10); theta = zeta + 0.25 * NPY_PI; f = sin(theta); g = cos(theta); *ai = k * (f * uf - g * ug); *bi = k * (g * uf + f * ug); uf = 1.0 + zz * polevl(zz, APFN, 8) / p1evl(zz, APFD, 9); ug = z * polevl(zz, APGN, 10) / p1evl(zz, APGD, 10); k = sqpii * t; *aip = -k * (g * uf + f * ug); *bip = k * (f * uf - g * ug); return (0); } if (x >= 2.09) { /* cbrt(9) */ domflg = 5; t = sqrt(x); zeta = 2.0 * x * t / 3.0; g = exp(zeta); t = sqrt(t); k = 2.0 * t * g; z = 1.0 / zeta; f = polevl(z, AN, 7) / polevl(z, AD, 7); *ai = sqpii * f / k; k = -0.5 * sqpii * t / g; f = polevl(z, APN, 7) / polevl(z, APD, 7); *aip = f * k; if (x > 8.3203353) { /* zeta > 16 */ f = z * polevl(z, BN16, 4) / p1evl(z, BD16, 5); k = sqpii * g; *bi = k * (1.0 + f) / t; f = z * polevl(z, BPPN, 4) / p1evl(z, BPPD, 5); *bip = k * t * (1.0 + f); return (0); } } f = 1.0; g = x; t = 1.0; uf = 1.0; ug = x; k = 1.0; z = x * x * x; while (t > MACHEP) { uf *= z; k += 1.0; uf /= k; ug *= z; k += 1.0; ug /= k; uf /= k; f += uf; k += 1.0; ug /= k; g += ug; t = fabs(uf / f); } uf = c1 * f; ug = c2 * g; if ((domflg & 1) == 0) *ai = uf - ug; if ((domflg & 2) == 0) *bi = sqrt3 * (uf + ug); /* the deriviative of ai */ k = 4.0; uf = x * x / 2.0; ug = z / 3.0; f = uf; g = 1.0 + ug; uf /= 3.0; t = 1.0; while (t > MACHEP) { uf *= z; ug /= k; k += 1.0; ug *= z; uf /= k; f += uf; k += 1.0; ug /= k; uf /= k; g += ug; k += 1.0; t = fabs(ug / g); } uf = c1 * f; ug = c2 * g; if ((domflg & 4) == 0) *aip = uf - ug; if ((domflg & 8) == 0) *bip = sqrt3 * (uf + ug); return (0); }