import re import warnings import numpy as np from scipy._lib._util import check_random_state from ._rotation_groups import create_group cimport numpy as np cimport cython from cython.view cimport array from libc.math cimport sqrt, sin, cos, atan2, acos from numpy.math cimport PI as pi, NAN, isnan # avoid MSVC error np.import_array() # utilities for empty array initialization cdef inline double[:] _empty1(int n): return array(shape=(n,), itemsize=sizeof(double), format=b"d") cdef inline double[:, :] _empty2(int n1, int n2): return array(shape=(n1, n2), itemsize=sizeof(double), format=b"d") cdef inline double[:, :, :] _empty3(int n1, int n2, int n3): return array(shape=(n1, n2, n3), itemsize=sizeof(double), format=b"d") cdef inline double[:, :] _zeros2(int n1, int n2): cdef double[:, :] arr = array(shape=(n1, n2), itemsize=sizeof(double), format=b"d") arr[:, :] = 0 return arr # flat implementations of numpy functions @cython.boundscheck(False) @cython.wraparound(False) cdef inline double[:] _cross3(const double[:] a, const double[:] b): cdef double[:] result = _empty1(3) result[0] = a[1]*b[2] - a[2]*b[1] result[1] = a[2]*b[0] - a[0]*b[2] result[2] = a[0]*b[1] - a[1]*b[0] return result @cython.boundscheck(False) @cython.wraparound(False) cdef inline double _dot3(const double[:] a, const double[:] b) nogil: return a[0]*b[0] + a[1]*b[1] + a[2]*b[2] @cython.boundscheck(False) @cython.wraparound(False) cdef inline double _norm3(const double[:] elems) nogil: return sqrt(_dot3(elems, elems)) @cython.boundscheck(False) @cython.wraparound(False) cdef inline double _normalize4(double[:] elems) nogil: cdef double norm = sqrt(_dot3(elems, elems) + elems[3]*elems[3]) if norm == 0: return NAN elems[0] /= norm elems[1] /= norm elems[2] /= norm elems[3] /= norm return norm @cython.boundscheck(False) @cython.wraparound(False) cdef inline int _argmax4(double[:] a) nogil: cdef int imax = 0 cdef double vmax = a[0] for i in range(1, 4): if a[i] > vmax: imax = i vmax = a[i] return imax ctypedef unsigned char uchar cdef double[3] _ex = [1, 0, 0] cdef double[3] _ey = [0, 1, 0] cdef double[3] _ez = [0, 0, 1] @cython.boundscheck(False) @cython.wraparound(False) cdef inline const double[:] _elementary_basis_vector(uchar axis): if axis == b'x': return _ex elif axis == b'y': return _ey elif axis == b'z': return _ez @cython.boundscheck(False) @cython.wraparound(False) cdef double[:, :] _compute_euler_from_matrix( np.ndarray[double, ndim=3] matrix, const uchar[:] seq, bint extrinsic=False ): # The algorithm assumes intrinsic frame transformations. The algorithm # in the paper is formulated for rotation matrices which are transposition # rotation matrices used within Rotation. # Adapt the algorithm for our case by # 1. Instead of transposing our representation, use the transpose of the # O matrix as defined in the paper, and be careful to swap indices # 2. Reversing both axis sequence and angles for extrinsic rotations if extrinsic: seq = seq[::-1] cdef Py_ssize_t num_rotations = matrix.shape[0] # Step 0 # Algorithm assumes axes as column vectors, here we use 1D vectors cdef const double[:] n1 = _elementary_basis_vector(seq[0]) cdef const double[:] n2 = _elementary_basis_vector(seq[1]) cdef const double[:] n3 = _elementary_basis_vector(seq[2]) # Step 2 cdef double sl = _dot3(_cross3(n1, n2), n3) cdef double cl = _dot3(n1, n3) # angle offset is lambda from the paper referenced in [2] from docstring of # `as_euler` function cdef double offset = atan2(sl, cl) cdef double[:, :] c_ = _empty2(3, 3) c_[0, :] = n2 c_[1, :] = _cross3(n1, n2) c_[2, :] = n1 cdef np.ndarray[double, ndim=2] c = np.asarray(c_) rot = np.array([ [1, 0, 0], [0, cl, sl], [0, -sl, cl], ]) # some forward definitions cdef double[:, :] angles = _empty2(num_rotations, 3) cdef double[:, :] matrix_trans # transformed matrix cdef double[:] _angles # accessor for each rotation cdef np.ndarray[double, ndim=2] res cdef double eps = 1e-7 cdef bint safe1, safe2, safe, adjust for ind in range(num_rotations): _angles = angles[ind, :] # Step 3 res = np.dot(c, matrix[ind, :, :]) matrix_trans = np.dot(res, c.T.dot(rot)) # Step 4 # Ensure less than unit norm matrix_trans[2, 2] = min(matrix_trans[2, 2], 1) matrix_trans[2, 2] = max(matrix_trans[2, 2], -1) _angles[1] = acos(matrix_trans[2, 2]) # Steps 5, 6 safe1 = abs(_angles[1]) >= eps safe2 = abs(_angles[1] - pi) >= eps safe = safe1 and safe2 # Step 4 (Completion) _angles[1] += offset # 5b if safe: _angles[0] = atan2(matrix_trans[0, 2], -matrix_trans[1, 2]) _angles[2] = atan2(matrix_trans[2, 0], matrix_trans[2, 1]) if extrinsic: # For extrinsic, set first angle to zero so that after reversal we # ensure that third angle is zero # 6a if not safe: _angles[0] = 0 # 6b if not safe1: _angles[2] = atan2(matrix_trans[1, 0] - matrix_trans[0, 1], matrix_trans[0, 0] + matrix_trans[1, 1]) # 6c if not safe2: _angles[2] = -atan2(matrix_trans[1, 0] + matrix_trans[0, 1], matrix_trans[0, 0] - matrix_trans[1, 1]) else: # For intrinsic, set third angle to zero # 6a if not safe: _angles[2] = 0 # 6b if not safe1: _angles[0] = atan2(matrix_trans[1, 0] - matrix_trans[0, 1], matrix_trans[0, 0] + matrix_trans[1, 1]) # 6c if not safe2: _angles[0] = atan2(matrix_trans[1, 0] + matrix_trans[0, 1], matrix_trans[0, 0] - matrix_trans[1, 1]) # Step 7 if seq[0] == seq[2]: # lambda = 0, so we can only ensure angle2 -> [0, pi] adjust = _angles[1] < 0 or _angles[1] > pi else: # lambda = + or - pi/2, so we can ensure angle2 -> [-pi/2, pi/2] adjust = _angles[1] < -pi / 2 or _angles[1] > pi / 2 # Dont adjust gimbal locked angle sequences if adjust and safe: _angles[0] += pi _angles[1] = 2 * offset - _angles[1] _angles[2] -= pi for i in range(3): if _angles[i] < -pi: _angles[i] += 2 * pi elif _angles[i] > pi: _angles[i] -= 2 * pi if extrinsic: # reversal _angles[0], _angles[2] = _angles[2], _angles[0] # Step 8 if not safe: warnings.warn("Gimbal lock detected. Setting third angle to zero " "since it is not possible to uniquely determine " "all angles.") return angles @cython.boundscheck(False) @cython.wraparound(False) cdef inline void _compose_quat_single( # calculate p * q into r const double[:] p, const double[:] q, double[:] r ): cdef double[:] cross = _cross3(p[:3], q[:3]) r[0] = p[3]*q[0] + q[3]*p[0] + cross[0] r[1] = p[3]*q[1] + q[3]*p[1] + cross[1] r[2] = p[3]*q[2] + q[3]*p[2] + cross[2] r[3] = p[3]*q[3] - p[0]*q[0] - p[1]*q[1] - p[2]*q[2] @cython.boundscheck(False) @cython.wraparound(False) cdef inline double[:, :] _compose_quat( const double[:, :] p, const double[:, :] q ): cdef Py_ssize_t n = max(p.shape[0], q.shape[0]) cdef double[:, :] product = _empty2(n, 4) # dealing with broadcasting if p.shape[0] == 1: for ind in range(n): _compose_quat_single(p[0], q[ind], product[ind]) elif q.shape[0] == 1: for ind in range(n): _compose_quat_single(p[ind], q[0], product[ind]) else: for ind in range(n): _compose_quat_single(p[ind], q[ind], product[ind]) return product @cython.boundscheck(False) @cython.wraparound(False) cdef inline double[:, :] _make_elementary_quat( uchar axis, const double[:] angles ): cdef Py_ssize_t n = angles.shape[0] cdef double[:, :] quat = _zeros2(n, 4) cdef int axis_ind if axis == b'x': axis_ind = 0 elif axis == b'y': axis_ind = 1 elif axis == b'z': axis_ind = 2 for ind in range(n): quat[ind, 3] = cos(angles[ind] / 2) quat[ind, axis_ind] = sin(angles[ind] / 2) return quat @cython.boundscheck(False) @cython.wraparound(False) cdef double[:, :] _elementary_quat_compose( const uchar[:] seq, const double[:, :] angles, bint intrinsic=False ): cdef double[:, :] result = _make_elementary_quat(seq[0], angles[:, 0]) cdef Py_ssize_t seq_len = seq.shape[0] for idx in range(1, seq_len): if intrinsic: result = _compose_quat( result, _make_elementary_quat(seq[idx], angles[:, idx])) else: result = _compose_quat( _make_elementary_quat(seq[idx], angles[:, idx]), result) return result cdef class Rotation: """Rotation in 3 dimensions. This class provides an interface to initialize from and represent rotations with: - Quaternions - Rotation Matrices - Rotation Vectors - Modified Rodrigues Parameters - Euler Angles The following operations on rotations are supported: - Application on vectors - Rotation Composition - Rotation Inversion - Rotation Indexing Indexing within a rotation is supported since multiple rotation transforms can be stored within a single `Rotation` instance. To create `Rotation` objects use ``from_...`` methods (see examples below). ``Rotation(...)`` is not supposed to be instantiated directly. Attributes ---------- single Methods ------- __len__ from_quat from_matrix from_rotvec from_mrp from_euler as_quat as_matrix as_rotvec as_mrp as_euler concatenate apply __mul__ inv magnitude mean reduce create_group __getitem__ identity random align_vectors See Also -------- Slerp Notes ----- .. versionadded: 1.2.0 Examples -------- >>> from scipy.spatial.transform import Rotation as R A `Rotation` instance can be initialized in any of the above formats and converted to any of the others. The underlying object is independent of the representation used for initialization. Consider a counter-clockwise rotation of 90 degrees about the z-axis. This corresponds to the following quaternion (in scalar-last format): >>> r = R.from_quat([0, 0, np.sin(np.pi/4), np.cos(np.pi/4)]) The rotation can be expressed in any of the other formats: >>> r.as_matrix() array([[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00], [ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]) >>> r.as_rotvec() array([0. , 0. , 1.57079633]) >>> r.as_euler('zyx', degrees=True) array([90., 0., 0.]) The same rotation can be initialized using a rotation matrix: >>> r = R.from_matrix([[0, -1, 0], ... [1, 0, 0], ... [0, 0, 1]]) Representation in other formats: >>> r.as_quat() array([0. , 0. , 0.70710678, 0.70710678]) >>> r.as_rotvec() array([0. , 0. , 1.57079633]) >>> r.as_euler('zyx', degrees=True) array([90., 0., 0.]) The rotation vector corresponding to this rotation is given by: >>> r = R.from_rotvec(np.pi/2 * np.array([0, 0, 1])) Representation in other formats: >>> r.as_quat() array([0. , 0. , 0.70710678, 0.70710678]) >>> r.as_matrix() array([[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00], [ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]) >>> r.as_euler('zyx', degrees=True) array([90., 0., 0.]) The ``from_euler`` method is quite flexible in the range of input formats it supports. Here we initialize a single rotation about a single axis: >>> r = R.from_euler('z', 90, degrees=True) Again, the object is representation independent and can be converted to any other format: >>> r.as_quat() array([0. , 0. , 0.70710678, 0.70710678]) >>> r.as_matrix() array([[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00], [ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]) >>> r.as_rotvec() array([0. , 0. , 1.57079633]) It is also possible to initialize multiple rotations in a single instance using any of the ``from_...`` functions. Here we initialize a stack of 3 rotations using the ``from_euler`` method: >>> r = R.from_euler('zyx', [ ... [90, 0, 0], ... [0, 45, 0], ... [45, 60, 30]], degrees=True) The other representations also now return a stack of 3 rotations. For example: >>> r.as_quat() array([[0. , 0. , 0.70710678, 0.70710678], [0. , 0.38268343, 0. , 0.92387953], [0.39190384, 0.36042341, 0.43967974, 0.72331741]]) Applying the above rotations onto a vector: >>> v = [1, 2, 3] >>> r.apply(v) array([[-2. , 1. , 3. ], [ 2.82842712, 2. , 1.41421356], [ 2.24452282, 0.78093109, 2.89002836]]) A `Rotation` instance can be indexed and sliced as if it were a single 1D array or list: >>> r.as_quat() array([[0. , 0. , 0.70710678, 0.70710678], [0. , 0.38268343, 0. , 0.92387953], [0.39190384, 0.36042341, 0.43967974, 0.72331741]]) >>> p = r[0] >>> p.as_matrix() array([[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00], [ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]) >>> q = r[1:3] >>> q.as_quat() array([[0. , 0.38268343, 0. , 0.92387953], [0.39190384, 0.36042341, 0.43967974, 0.72331741]]) In fact it can be converted to numpy.array: >>> r_array = np.asarray(r) >>> r_array.shape (3,) >>> r_array[0].as_matrix() array([[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00], [ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]) Multiple rotations can be composed using the ``*`` operator: >>> r1 = R.from_euler('z', 90, degrees=True) >>> r2 = R.from_rotvec([np.pi/4, 0, 0]) >>> v = [1, 2, 3] >>> r2.apply(r1.apply(v)) array([-2. , -1.41421356, 2.82842712]) >>> r3 = r2 * r1 # Note the order >>> r3.apply(v) array([-2. , -1.41421356, 2.82842712]) Finally, it is also possible to invert rotations: >>> r1 = R.from_euler('z', [90, 45], degrees=True) >>> r2 = r1.inv() >>> r2.as_euler('zyx', degrees=True) array([[-90., 0., 0.], [-45., 0., 0.]]) These examples serve as an overview into the `Rotation` class and highlight major functionalities. For more thorough examples of the range of input and output formats supported, consult the individual method's examples. """ cdef double[:, :] _quat cdef bint _single @cython.boundscheck(False) @cython.wraparound(False) def __init__(self, quat, normalize=True, copy=True): self._single = False quat = np.asarray(quat, dtype=float) if quat.ndim not in [1, 2] or quat.shape[len(quat.shape) - 1] != 4: raise ValueError("Expected `quat` to have shape (4,) or (N x 4), " "got {}.".format(quat.shape)) # If a single quaternion is given, convert it to a 2D 1 x 4 matrix but # set self._single to True so that we can return appropriate objects # in the `to_...` methods if quat.shape == (4,): quat = quat[None, :] self._single = True cdef Py_ssize_t num_rotations = quat.shape[0] if normalize: self._quat = quat.copy() for ind in range(num_rotations): if isnan(_normalize4(self._quat[ind, :])): raise ValueError("Found zero norm quaternions in `quat`.") else: self._quat = quat.copy() if copy else quat def __getstate__(self): return np.asarray(self._quat, dtype=float), self._single def __setstate__(self, state): quat, single = state self._quat = quat.copy() self._single = single @property def single(self): """Whether this instance represents a single rotation.""" return self._single def __len__(self): """Number of rotations contained in this object. Multiple rotations can be stored in a single instance. Returns ------- length : int Number of rotations stored in object. Raises ------ TypeError if the instance was created as a single rotation. """ if self._single: raise TypeError("Single rotation has no len().") return self._quat.shape[0] @classmethod def from_quat(cls, quat): """Initialize from quaternions. 3D rotations can be represented using unit-norm quaternions [1]_. Parameters ---------- quat : array_like, shape (N, 4) or (4,) Each row is a (possibly non-unit norm) quaternion in scalar-last (x, y, z, w) format. Each quaternion will be normalized to unit norm. Returns ------- rotation : `Rotation` instance Object containing the rotations represented by input quaternions. References ---------- .. [1] https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation Examples -------- >>> from scipy.spatial.transform import Rotation as R Initialize a single rotation: >>> r = R.from_quat([1, 0, 0, 0]) >>> r.as_quat() array([1., 0., 0., 0.]) >>> r.as_quat().shape (4,) Initialize multiple rotations in a single object: >>> r = R.from_quat([ ... [1, 0, 0, 0], ... [0, 0, 0, 1] ... ]) >>> r.as_quat() array([[1., 0., 0., 0.], [0., 0., 0., 1.]]) >>> r.as_quat().shape (2, 4) It is also possible to have a stack of a single rotation: >>> r = R.from_quat([[0, 0, 0, 1]]) >>> r.as_quat() array([[0., 0., 0., 1.]]) >>> r.as_quat().shape (1, 4) Quaternions are normalized before initialization. >>> r = R.from_quat([0, 0, 1, 1]) >>> r.as_quat() array([0. , 0. , 0.70710678, 0.70710678]) """ return cls(quat, normalize=True) @classmethod @cython.boundscheck(False) @cython.wraparound(False) def from_matrix(cls, matrix): """Initialize from rotation matrix. Rotations in 3 dimensions can be represented with 3 x 3 proper orthogonal matrices [1]_. If the input is not proper orthogonal, an approximation is created using the method described in [2]_. Parameters ---------- matrix : array_like, shape (N, 3, 3) or (3, 3) A single matrix or a stack of matrices, where ``matrix[i]`` is the i-th matrix. Returns ------- rotation : `Rotation` instance Object containing the rotations represented by the rotation matrices. References ---------- .. [1] https://en.wikipedia.org/wiki/Rotation_matrix#In_three_dimensions .. [2] F. Landis Markley, "Unit Quaternion from Rotation Matrix", Journal of guidance, control, and dynamics vol. 31.2, pp. 440-442, 2008. Examples -------- >>> from scipy.spatial.transform import Rotation as R Initialize a single rotation: >>> r = R.from_matrix([ ... [0, -1, 0], ... [1, 0, 0], ... [0, 0, 1]]) >>> r.as_matrix().shape (3, 3) Initialize multiple rotations in a single object: >>> r = R.from_matrix([ ... [ ... [0, -1, 0], ... [1, 0, 0], ... [0, 0, 1], ... ], ... [ ... [1, 0, 0], ... [0, 0, -1], ... [0, 1, 0], ... ]]) >>> r.as_matrix().shape (2, 3, 3) If input matrices are not special orthogonal (orthogonal with determinant equal to +1), then a special orthogonal estimate is stored: >>> a = np.array([ ... [0, -0.5, 0], ... [0.5, 0, 0], ... [0, 0, 0.5]]) >>> np.linalg.det(a) 0.12500000000000003 >>> r = R.from_matrix(a) >>> matrix = r.as_matrix() >>> matrix array([[-0.38461538, -0.92307692, 0. ], [ 0.92307692, -0.38461538, 0. ], [ 0. , 0. , 1. ]]) >>> np.linalg.det(matrix) 1.0000000000000002 It is also possible to have a stack containing a single rotation: >>> r = R.from_matrix([[ ... [0, -1, 0], ... [1, 0, 0], ... [0, 0, 1]]]) >>> r.as_matrix() array([[[ 0., -1., 0.], [ 1., 0., 0.], [ 0., 0., 1.]]]) >>> r.as_matrix().shape (1, 3, 3) Notes ----- This function was called from_dcm before. .. versionadded:: 1.4.0 """ is_single = False matrix = np.asarray(matrix, dtype=float) if (matrix.ndim not in [2, 3] or matrix.shape[len(matrix.shape)-2:] != (3, 3)): raise ValueError("Expected `matrix` to have shape (3, 3) or " "(N, 3, 3), got {}".format(matrix.shape)) # If a single matrix is given, convert it to 3D 1 x 3 x 3 matrix but # set self._single to True so that we can return appropriate objects in # the `to_...` methods cdef double[:, :, :] cmatrix if matrix.shape == (3, 3): cmatrix = matrix[None, :, :] is_single = True else: cmatrix = matrix cdef Py_ssize_t num_rotations = cmatrix.shape[0] cdef Py_ssize_t i, j, k cdef double[:] decision = _empty1(4) cdef int choice cdef double[:, :] quat = _empty2(num_rotations, 4) for ind in range(num_rotations): decision[0] = cmatrix[ind, 0, 0] decision[1] = cmatrix[ind, 1, 1] decision[2] = cmatrix[ind, 2, 2] decision[3] = cmatrix[ind, 0, 0] + cmatrix[ind, 1, 1] \ + cmatrix[ind, 2, 2] choice = _argmax4(decision) if choice != 3: i = choice j = (i + 1) % 3 k = (j + 1) % 3 quat[ind, i] = 1 - decision[3] + 2 * cmatrix[ind, i, i] quat[ind, j] = cmatrix[ind, j, i] + cmatrix[ind, i, j] quat[ind, k] = cmatrix[ind, k, i] + cmatrix[ind, i, k] quat[ind, 3] = cmatrix[ind, k, j] - cmatrix[ind, j, k] else: quat[ind, 0] = cmatrix[ind, 2, 1] - cmatrix[ind, 1, 2] quat[ind, 1] = cmatrix[ind, 0, 2] - cmatrix[ind, 2, 0] quat[ind, 2] = cmatrix[ind, 1, 0] - cmatrix[ind, 0, 1] quat[ind, 3] = 1 + decision[3] # normalize _normalize4(quat[ind]) if is_single: return cls(quat[0], normalize=False, copy=False) else: return cls(quat, normalize=False, copy=False) @classmethod @cython.boundscheck(False) @cython.wraparound(False) def from_rotvec(cls, rotvec, degrees=False): """Initialize from rotation vectors. A rotation vector is a 3 dimensional vector which is co-directional to the axis of rotation and whose norm gives the angle of rotation [1]_. Parameters ---------- rotvec : array_like, shape (N, 3) or (3,) A single vector or a stack of vectors, where `rot_vec[i]` gives the ith rotation vector. degrees : bool, optional If True, then the given magnitudes are assumed to be in degrees. Default is False. .. versionadded:: 1.7.0 Returns ------- rotation : `Rotation` instance Object containing the rotations represented by input rotation vectors. References ---------- .. [1] https://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation#Rotation_vector Examples -------- >>> from scipy.spatial.transform import Rotation as R Initialize a single rotation: >>> r = R.from_rotvec(np.pi/2 * np.array([0, 0, 1])) >>> r.as_rotvec() array([0. , 0. , 1.57079633]) >>> r.as_rotvec().shape (3,) Initialize a rotation in degrees, and view it in degrees: >>> r = R.from_rotvec(45 * np.array([0, 1, 0]), degrees=True) >>> r.as_rotvec(degrees=True) array([ 0., 45., 0.]) Initialize multiple rotations in one object: >>> r = R.from_rotvec([ ... [0, 0, np.pi/2], ... [np.pi/2, 0, 0]]) >>> r.as_rotvec() array([[0. , 0. , 1.57079633], [1.57079633, 0. , 0. ]]) >>> r.as_rotvec().shape (2, 3) It is also possible to have a stack of a single rotaton: >>> r = R.from_rotvec([[0, 0, np.pi/2]]) >>> r.as_rotvec().shape (1, 3) """ is_single = False rotvec = np.asarray(rotvec, dtype=float) if degrees: rotvec = np.deg2rad(rotvec) if rotvec.ndim not in [1, 2] or rotvec.shape[len(rotvec.shape)-1] != 3: raise ValueError("Expected `rot_vec` to have shape (3,) " "or (N, 3), got {}".format(rotvec.shape)) # If a single vector is given, convert it to a 2D 1 x 3 matrix but # set self._single to True so that we can return appropriate objects # in the `as_...` methods cdef double[:, :] crotvec if rotvec.shape == (3,): crotvec = rotvec[None, :] is_single = True else: crotvec = rotvec cdef Py_ssize_t num_rotations = crotvec.shape[0] cdef double angle, scale, angle2 cdef double[:, :] quat = _empty2(num_rotations, 4) for ind in range(num_rotations): angle = _norm3(crotvec[ind, :]) if angle <= 1e-3: # small angle angle2 = angle * angle scale = 0.5 - angle2 / 48 + angle2 * angle2 / 3840 else: # large angle scale = sin(angle / 2) / angle quat[ind, 0] = scale * crotvec[ind, 0] quat[ind, 1] = scale * crotvec[ind, 1] quat[ind, 2] = scale * crotvec[ind, 2] quat[ind, 3] = cos(angle / 2) if is_single: return cls(quat[0], normalize=False, copy=False) else: return cls(quat, normalize=False, copy=False) @classmethod def from_euler(cls, seq, angles, degrees=False): """Initialize from Euler angles. Rotations in 3-D can be represented by a sequence of 3 rotations around a sequence of axes. In theory, any three axes spanning the 3-D Euclidean space are enough. In practice, the axes of rotation are chosen to be the basis vectors. The three rotations can either be in a global frame of reference (extrinsic) or in a body centred frame of reference (intrinsic), which is attached to, and moves with, the object under rotation [1]_. Parameters ---------- seq : string Specifies sequence of axes for rotations. Up to 3 characters belonging to the set {'X', 'Y', 'Z'} for intrinsic rotations, or {'x', 'y', 'z'} for extrinsic rotations. Extrinsic and intrinsic rotations cannot be mixed in one function call. angles : float or array_like, shape (N,) or (N, [1 or 2 or 3]) Euler angles specified in radians (`degrees` is False) or degrees (`degrees` is True). For a single character `seq`, `angles` can be: - a single value - array_like with shape (N,), where each `angle[i]` corresponds to a single rotation - array_like with shape (N, 1), where each `angle[i, 0]` corresponds to a single rotation For 2- and 3-character wide `seq`, `angles` can be: - array_like with shape (W,) where `W` is the width of `seq`, which corresponds to a single rotation with `W` axes - array_like with shape (N, W) where each `angle[i]` corresponds to a sequence of Euler angles describing a single rotation degrees : bool, optional If True, then the given angles are assumed to be in degrees. Default is False. Returns ------- rotation : `Rotation` instance Object containing the rotation represented by the sequence of rotations around given axes with given angles. References ---------- .. [1] https://en.wikipedia.org/wiki/Euler_angles#Definition_by_intrinsic_rotations Examples -------- >>> from scipy.spatial.transform import Rotation as R Initialize a single rotation along a single axis: >>> r = R.from_euler('x', 90, degrees=True) >>> r.as_quat().shape (4,) Initialize a single rotation with a given axis sequence: >>> r = R.from_euler('zyx', [90, 45, 30], degrees=True) >>> r.as_quat().shape (4,) Initialize a stack with a single rotation around a single axis: >>> r = R.from_euler('x', [90], degrees=True) >>> r.as_quat().shape (1, 4) Initialize a stack with a single rotation with an axis sequence: >>> r = R.from_euler('zyx', [[90, 45, 30]], degrees=True) >>> r.as_quat().shape (1, 4) Initialize multiple elementary rotations in one object: >>> r = R.from_euler('x', [90, 45, 30], degrees=True) >>> r.as_quat().shape (3, 4) Initialize multiple rotations in one object: >>> r = R.from_euler('zyx', [[90, 45, 30], [35, 45, 90]], degrees=True) >>> r.as_quat().shape (2, 4) """ num_axes = len(seq) if num_axes < 1 or num_axes > 3: raise ValueError("Expected axis specification to be a non-empty " "string of upto 3 characters, got {}".format(seq)) intrinsic = (re.match(r'^[XYZ]{1,3}$', seq) is not None) extrinsic = (re.match(r'^[xyz]{1,3}$', seq) is not None) if not (intrinsic or extrinsic): raise ValueError("Expected axes from `seq` to be from ['x', 'y', " "'z'] or ['X', 'Y', 'Z'], got {}".format(seq)) if any(seq[i] == seq[i+1] for i in range(num_axes - 1)): raise ValueError("Expected consecutive axes to be different, " "got {}".format(seq)) seq = seq.lower() angles = np.asarray(angles, dtype=float) if degrees: angles = np.deg2rad(angles) is_single = False # Prepare angles to have shape (num_rot, num_axes) if num_axes == 1: if angles.ndim == 0: # (1, 1) angles = angles.reshape((1, 1)) is_single = True elif angles.ndim == 1: # (N, 1) angles = angles[:, None] elif angles.ndim == 2 and angles.shape[-1] != 1: raise ValueError("Expected `angles` parameter to have shape " "(N, 1), got {}.".format(angles.shape)) elif angles.ndim > 2: raise ValueError("Expected float, 1D array, or 2D array for " "parameter `angles` corresponding to `seq`, " "got shape {}.".format(angles.shape)) else: # 2 or 3 axes if angles.ndim not in [1, 2] or angles.shape[-1] != num_axes: raise ValueError("Expected `angles` to be at most " "2-dimensional with width equal to number " "of axes specified, got {} for shape".format( angles.shape)) if angles.ndim == 1: # (1, num_axes) angles = angles[None, :] is_single = True # By now angles should have shape (num_rot, num_axes) # sanity check if angles.ndim != 2 or angles.shape[-1] != num_axes: raise ValueError("Expected angles to have shape (num_rotations, " "num_axes), got {}.".format(angles.shape)) quat = _elementary_quat_compose(seq.encode(), angles, intrinsic) if is_single: return cls(quat[0], normalize=False, copy=False) else: return cls(quat, normalize=False, copy=False) @classmethod @cython.boundscheck(False) @cython.wraparound(False) def from_mrp(cls, mrp): """Initialize from Modified Rodrigues Parameters (MRPs). MRPs are a 3 dimensional vector co-directional to the axis of rotation and whose magnitude is equal to ``tan(theta / 4)``, where ``theta`` is the angle of rotation (in radians) [1]_. MRPs have a singuarity at 360 degrees which can be avoided by ensuring the angle of rotation does not exceed 180 degrees, i.e. switching the direction of the rotation when it is past 180 degrees. Parameters ---------- mrp : array_like, shape (N, 3) or (3,) A single vector or a stack of vectors, where `mrp[i]` gives the ith set of MRPs. Returns ------- rotation : `Rotation` instance Object containing the rotations represented by input MRPs. References ---------- .. [1] Shuster, M. D. "A Survery of Attitude Representations", The Journal of Astronautical Sciences, Vol. 41, No.4, 1993, pp. 475-476 Notes ----- .. versionadded:: 1.6.0 Examples -------- >>> from scipy.spatial.transform import Rotation as R Initialize a single rotation: >>> r = R.from_mrp([0, 0, 1]) >>> r.as_euler('xyz', degrees=True) array([0. , 0. , 180. ]) >>> r.as_euler('xyz').shape (3,) Initialize multiple rotations in one object: >>> r = R.from_mrp([ ... [0, 0, 1], ... [1, 0, 0]]) >>> r.as_euler('xyz', degrees=True) array([[0. , 0. , 180. ], [180.0 , 0. , 0. ]]) >>> r.as_euler('xyz').shape (2, 3) It is also possible to have a stack of a single rotation: >>> r = R.from_mrp([[0, 0, np.pi/2]]) >>> r.as_euler('xyz').shape (1, 3) """ is_single = False mrp = np.asarray(mrp, dtype=float) if mrp.ndim not in [1, 2] or mrp.shape[len(mrp.shape) - 1] != 3: raise ValueError("Expected `mrp` to have shape (3,) " "or (N, 3), got {}".format(mrp.shape)) # If a single vector is given, convert it to a 2D 1 x 3 matrix but # set self._single to True so that we can return appropriate objects # in the `as_...` methods cdef double[:, :] cmrp if mrp.shape == (3,): cmrp = mrp[None, :] is_single = True else: cmrp = mrp cdef Py_ssize_t num_rotations = cmrp.shape[0] cdef double[:, :] quat = _empty2(num_rotations, 4) cdef double mrp_squared_plus_1 for ind in range(num_rotations): mrp_squared_plus_1 = 1 + _dot3(cmrp[ind, :], cmrp[ind, :]) quat[ind, 0] = 2 * cmrp[ind, 0] / mrp_squared_plus_1 quat[ind, 1] = 2 * cmrp[ind, 1] / mrp_squared_plus_1 quat[ind, 2] = 2 * cmrp[ind, 2] / mrp_squared_plus_1 quat[ind, 3] = (2 - mrp_squared_plus_1) / mrp_squared_plus_1 if is_single: return cls(quat[0], normalize=False, copy=False) else: return cls(quat, normalize=False, copy=False) def as_quat(self): """Represent as quaternions. Rotations in 3 dimensions can be represented using unit norm quaternions [1]_. The mapping from quaternions to rotations is two-to-one, i.e. quaternions ``q`` and ``-q``, where ``-q`` simply reverses the sign of each component, represent the same spatial rotation. The returned value is in scalar-last (x, y, z, w) format. Returns ------- quat : `numpy.ndarray`, shape (4,) or (N, 4) Shape depends on shape of inputs used for initialization. References ---------- .. [1] https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation Examples -------- >>> from scipy.spatial.transform import Rotation as R Represent a single rotation: >>> r = R.from_matrix([[0, -1, 0], ... [1, 0, 0], ... [0, 0, 1]]) >>> r.as_quat() array([0. , 0. , 0.70710678, 0.70710678]) >>> r.as_quat().shape (4,) Represent a stack with a single rotation: >>> r = R.from_quat([[0, 0, 0, 1]]) >>> r.as_quat().shape (1, 4) Represent multiple rotations in a single object: >>> r = R.from_rotvec([[np.pi, 0, 0], [0, 0, np.pi/2]]) >>> r.as_quat().shape (2, 4) """ if self._single: return np.array(self._quat[0], copy=True) else: return np.array(self._quat, copy=True) @cython.boundscheck(False) @cython.wraparound(False) def as_matrix(self): """Represent as rotation matrix. 3D rotations can be represented using rotation matrices, which are 3 x 3 real orthogonal matrices with determinant equal to +1 [1]_. Returns ------- matrix : ndarray, shape (3, 3) or (N, 3, 3) Shape depends on shape of inputs used for initialization. References ---------- .. [1] https://en.wikipedia.org/wiki/Rotation_matrix#In_three_dimensions Examples -------- >>> from scipy.spatial.transform import Rotation as R Represent a single rotation: >>> r = R.from_rotvec([0, 0, np.pi/2]) >>> r.as_matrix() array([[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00], [ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]) >>> r.as_matrix().shape (3, 3) Represent a stack with a single rotation: >>> r = R.from_quat([[1, 1, 0, 0]]) >>> r.as_matrix() array([[[ 0., 1., 0.], [ 1., 0., 0.], [ 0., 0., -1.]]]) >>> r.as_matrix().shape (1, 3, 3) Represent multiple rotations: >>> r = R.from_rotvec([[np.pi/2, 0, 0], [0, 0, np.pi/2]]) >>> r.as_matrix() array([[[ 1.00000000e+00, 0.00000000e+00, 0.00000000e+00], [ 0.00000000e+00, 2.22044605e-16, -1.00000000e+00], [ 0.00000000e+00, 1.00000000e+00, 2.22044605e-16]], [[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00], [ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]]) >>> r.as_matrix().shape (2, 3, 3) Notes ----- This function was called as_dcm before. .. versionadded:: 1.4.0 """ cdef double[:, :] quat = self._quat cdef Py_ssize_t num_rotations = quat.shape[0] cdef double[:, :, :] matrix = _empty3(num_rotations, 3, 3) cdef double x, y, z, w, x2, y2, z2, w2 cdef double xy, zw, xz, yw, yz, xw for ind in range(num_rotations): x = quat[ind, 0] y = quat[ind, 1] z = quat[ind, 2] w = quat[ind, 3] x2 = x * x y2 = y * y z2 = z * z w2 = w * w xy = x * y zw = z * w xz = x * z yw = y * w yz = y * z xw = x * w matrix[ind, 0, 0] = x2 - y2 - z2 + w2 matrix[ind, 1, 0] = 2 * (xy + zw) matrix[ind, 2, 0] = 2 * (xz - yw) matrix[ind, 0, 1] = 2 * (xy - zw) matrix[ind, 1, 1] = - x2 + y2 - z2 + w2 matrix[ind, 2, 1] = 2 * (yz + xw) matrix[ind, 0, 2] = 2 * (xz + yw) matrix[ind, 1, 2] = 2 * (yz - xw) matrix[ind, 2, 2] = - x2 - y2 + z2 + w2 ret = np.asarray(matrix) if self._single: return ret[0] else: return ret @cython.boundscheck(False) @cython.wraparound(False) def as_rotvec(self, degrees=False): """Represent as rotation vectors. A rotation vector is a 3 dimensional vector which is co-directional to the axis of rotation and whose norm gives the angle of rotation [1]_. Parameters ---------- degrees : boolean, optional Returned magnitudes are in degrees if this flag is True, else they are in radians. Default is False. .. versionadded:: 1.7.0 Returns ------- rotvec : ndarray, shape (3,) or (N, 3) Shape depends on shape of inputs used for initialization. References ---------- .. [1] https://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation#Rotation_vector Examples -------- >>> from scipy.spatial.transform import Rotation as R Represent a single rotation: >>> r = R.from_euler('z', 90, degrees=True) >>> r.as_rotvec() array([0. , 0. , 1.57079633]) >>> r.as_rotvec().shape (3,) Represent a rotation in degrees: >>> r = R.from_euler('YX', (-90, -90), degrees=True) >>> s = r.as_rotvec(degrees=True) >>> s array([-69.2820323, -69.2820323, -69.2820323]) >>> np.linalg.norm(s) 120.00000000000001 Represent a stack with a single rotation: >>> r = R.from_quat([[0, 0, 1, 1]]) >>> r.as_rotvec() array([[0. , 0. , 1.57079633]]) >>> r.as_rotvec().shape (1, 3) Represent multiple rotations in a single object: >>> r = R.from_quat([[0, 0, 1, 1], [1, 1, 0, 1]]) >>> r.as_rotvec() array([[0. , 0. , 1.57079633], [1.35102172, 1.35102172, 0. ]]) >>> r.as_rotvec().shape (2, 3) """ cdef Py_ssize_t num_rotations = len(self._quat) cdef double angle, scale, angle2 cdef double[:, :] rotvec = _empty2(num_rotations, 3) cdef double[:] quat for ind in range(num_rotations): if self._quat[ind, 3] < 0: # w > 0 to ensure 0 <= angle <= pi quat = self._quat[ind, :].copy() for i in range(4): quat[i] *= -1 else: quat = self._quat[ind, :] angle = 2 * atan2(_norm3(quat), quat[3]) if angle <= 1e-3: # small angle angle2 = angle * angle scale = 2 + angle2 / 12 + 7 * angle2 * angle2 / 2880 else: # large angle scale = angle / sin(angle / 2) rotvec[ind, 0] = scale * quat[0] rotvec[ind, 1] = scale * quat[1] rotvec[ind, 2] = scale * quat[2] if degrees: rotvec = np.rad2deg(rotvec) if self._single: return np.asarray(rotvec[0]) else: return np.asarray(rotvec) def as_euler(self, seq, degrees=False): """Represent as Euler angles. Any orientation can be expressed as a composition of 3 elementary rotations. Once the axis sequence has been chosen, Euler angles define the angle of rotation around each respective axis [1]_. The algorithm from [2]_ has been used to calculate Euler angles for the rotation about a given sequence of axes. Euler angles suffer from the problem of gimbal lock [3]_, where the representation loses a degree of freedom and it is not possible to determine the first and third angles uniquely. In this case, a warning is raised, and the third angle is set to zero. Note however that the returned angles still represent the correct rotation. Parameters ---------- seq : string, length 3 3 characters belonging to the set {'X', 'Y', 'Z'} for intrinsic rotations, or {'x', 'y', 'z'} for extrinsic rotations [1]_. Adjacent axes cannot be the same. Extrinsic and intrinsic rotations cannot be mixed in one function call. degrees : boolean, optional Returned angles are in degrees if this flag is True, else they are in radians. Default is False. Returns ------- angles : ndarray, shape (3,) or (N, 3) Shape depends on shape of inputs used to initialize object. The returned angles are in the range: - First angle belongs to [-180, 180] degrees (both inclusive) - Third angle belongs to [-180, 180] degrees (both inclusive) - Second angle belongs to: - [-90, 90] degrees if all axes are different (like xyz) - [0, 180] degrees if first and third axes are the same (like zxz) References ---------- .. [1] https://en.wikipedia.org/wiki/Euler_angles#Definition_by_intrinsic_rotations .. [2] Malcolm D. Shuster, F. Landis Markley, "General formula for extraction the Euler angles", Journal of guidance, control, and dynamics, vol. 29.1, pp. 215-221. 2006 .. [3] https://en.wikipedia.org/wiki/Gimbal_lock#In_applied_mathematics Examples -------- >>> from scipy.spatial.transform import Rotation as R Represent a single rotation: >>> r = R.from_rotvec([0, 0, np.pi/2]) >>> r.as_euler('zxy', degrees=True) array([90., 0., 0.]) >>> r.as_euler('zxy', degrees=True).shape (3,) Represent a stack of single rotation: >>> r = R.from_rotvec([[0, 0, np.pi/2]]) >>> r.as_euler('zxy', degrees=True) array([[90., 0., 0.]]) >>> r.as_euler('zxy', degrees=True).shape (1, 3) Represent multiple rotations in a single object: >>> r = R.from_rotvec([ ... [0, 0, np.pi/2], ... [0, -np.pi/3, 0], ... [np.pi/4, 0, 0]]) >>> r.as_euler('zxy', degrees=True) array([[ 90., 0., 0.], [ 0., 0., -60.], [ 0., 45., 0.]]) >>> r.as_euler('zxy', degrees=True).shape (3, 3) """ if len(seq) != 3: raise ValueError("Expected 3 axes, got {}.".format(seq)) intrinsic = (re.match(r'^[XYZ]{1,3}$', seq) is not None) extrinsic = (re.match(r'^[xyz]{1,3}$', seq) is not None) if not (intrinsic or extrinsic): raise ValueError("Expected axes from `seq` to be from " "['x', 'y', 'z'] or ['X', 'Y', 'Z'], " "got {}".format(seq)) if any(seq[i] == seq[i+1] for i in range(2)): raise ValueError("Expected consecutive axes to be different, " "got {}".format(seq)) seq = seq.lower() matrix = self.as_matrix() if matrix.ndim == 2: matrix = matrix[None, :, :] angles = np.asarray(_compute_euler_from_matrix( matrix, seq.encode(), extrinsic)) if degrees: angles = np.rad2deg(angles) return angles[0] if self._single else angles def as_mrp(self): """Represent as Modified Rodrigues Parameters (MRPs). MRPs are a 3 dimensional vector co-directional to the axis of rotation and whose magnitude is equal to ``tan(theta / 4)``, where ``theta`` is the angle of rotation (in radians) [1]_. MRPs have a singuarity at 360 degrees which can be avoided by ensuring the angle of rotation does not exceed 180 degrees, i.e. switching the direction of the rotation when it is past 180 degrees. This function will always return MRPs corresponding to a rotation of less than or equal to 180 degrees. Returns ------- mrps : ndarray, shape (3,) or (N, 3) Shape depends on shape of inputs used for initialization. References ---------- .. [1] Shuster, M. D. "A Survery of Attitude Representations", The Journal of Astronautical Sciences, Vol. 41, No.4, 1993, pp. 475-476 Examples -------- >>> from scipy.spatial.transform import Rotation as R Represent a single rotation: >>> r = R.from_rotvec([0, 0, np.pi]) >>> r.as_mrp() array([0. , 0. , 1. ]) >>> r.as_mrp().shape (3,) Represent a stack with a single rotation: >>> r = R.from_euler('xyz', [[180, 0, 0]], degrees=True) >>> r.as_mrp() array([[1. , 0. , 0. ]]) >>> r.as_mrp().shape (1, 3) Represent multiple rotations: >>> r = R.from_rotvec([[np.pi/2, 0, 0], [0, 0, np.pi/2]]) >>> r.as_mrp() array([[0.41421356, 0. , 0. ], [0. , 0. , 0.41421356]]) >>> r.as_mrp().shape (2, 3) Notes ----- .. versionadded:: 1.6.0 """ cdef Py_ssize_t num_rotations = len(self._quat) cdef double[:, :] mrps = _empty2(num_rotations, 3) cdef int sign cdef double denominator for ind in range(num_rotations): # Ensure we are calculating the set of MRPs that correspond # to a rotation of <= 180 sign = -1 if self._quat[ind, 3] < 0 else 1 denominator = 1 + sign * self._quat[ind, 3] for i in range(3): mrps[ind, i] = sign * self._quat[ind, i] / denominator if self._single: return np.asarray(mrps[0]) else: return np.asarray(mrps) @classmethod def concatenate(cls, rotations): """Concatenate a sequence of `Rotation` objects. Parameters ---------- rotations : sequence of `Rotation` objects The rotations to concatenate. Returns ------- concatenated : `Rotation` instance The concatenated rotations. Notes ----- .. versionadded:: 1.8.0 """ if not all(isinstance(x, Rotation) for x in rotations): raise TypeError("input must contain Rotation objects only") quats = np.concatenate([np.atleast_2d(x.as_quat()) for x in rotations]) return cls(quats, normalize=False) def apply(self, vectors, inverse=False): """Apply this rotation to a set of vectors. If the original frame rotates to the final frame by this rotation, then its application to a vector can be seen in two ways: - As a projection of vector components expressed in the final frame to the original frame. - As the physical rotation of a vector being glued to the original frame as it rotates. In this case the vector components are expressed in the original frame before and after the rotation. In terms of rotation matricies, this application is the same as ``self.as_matrix().dot(vectors)``. Parameters ---------- vectors : array_like, shape (3,) or (N, 3) Each `vectors[i]` represents a vector in 3D space. A single vector can either be specified with shape `(3, )` or `(1, 3)`. The number of rotations and number of vectors given must follow standard numpy broadcasting rules: either one of them equals unity or they both equal each other. inverse : boolean, optional If True then the inverse of the rotation(s) is applied to the input vectors. Default is False. Returns ------- rotated_vectors : ndarray, shape (3,) or (N, 3) Result of applying rotation on input vectors. Shape depends on the following cases: - If object contains a single rotation (as opposed to a stack with a single rotation) and a single vector is specified with shape ``(3,)``, then `rotated_vectors` has shape ``(3,)``. - In all other cases, `rotated_vectors` has shape ``(N, 3)``, where ``N`` is either the number of rotations or vectors. Examples -------- >>> from scipy.spatial.transform import Rotation as R Single rotation applied on a single vector: >>> vector = np.array([1, 0, 0]) >>> r = R.from_rotvec([0, 0, np.pi/2]) >>> r.as_matrix() array([[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00], [ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]) >>> r.apply(vector) array([2.22044605e-16, 1.00000000e+00, 0.00000000e+00]) >>> r.apply(vector).shape (3,) Single rotation applied on multiple vectors: >>> vectors = np.array([ ... [1, 0, 0], ... [1, 2, 3]]) >>> r = R.from_rotvec([0, 0, np.pi/4]) >>> r.as_matrix() array([[ 0.70710678, -0.70710678, 0. ], [ 0.70710678, 0.70710678, 0. ], [ 0. , 0. , 1. ]]) >>> r.apply(vectors) array([[ 0.70710678, 0.70710678, 0. ], [-0.70710678, 2.12132034, 3. ]]) >>> r.apply(vectors).shape (2, 3) Multiple rotations on a single vector: >>> r = R.from_rotvec([[0, 0, np.pi/4], [np.pi/2, 0, 0]]) >>> vector = np.array([1,2,3]) >>> r.as_matrix() array([[[ 7.07106781e-01, -7.07106781e-01, 0.00000000e+00], [ 7.07106781e-01, 7.07106781e-01, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]], [[ 1.00000000e+00, 0.00000000e+00, 0.00000000e+00], [ 0.00000000e+00, 2.22044605e-16, -1.00000000e+00], [ 0.00000000e+00, 1.00000000e+00, 2.22044605e-16]]]) >>> r.apply(vector) array([[-0.70710678, 2.12132034, 3. ], [ 1. , -3. , 2. ]]) >>> r.apply(vector).shape (2, 3) Multiple rotations on multiple vectors. Each rotation is applied on the corresponding vector: >>> r = R.from_euler('zxy', [ ... [0, 0, 90], ... [45, 30, 60]], degrees=True) >>> vectors = [ ... [1, 2, 3], ... [1, 0, -1]] >>> r.apply(vectors) array([[ 3. , 2. , -1. ], [-0.09026039, 1.11237244, -0.86860844]]) >>> r.apply(vectors).shape (2, 3) It is also possible to apply the inverse rotation: >>> r = R.from_euler('zxy', [ ... [0, 0, 90], ... [45, 30, 60]], degrees=True) >>> vectors = [ ... [1, 2, 3], ... [1, 0, -1]] >>> r.apply(vectors, inverse=True) array([[-3. , 2. , 1. ], [ 1.09533535, -0.8365163 , 0.3169873 ]]) """ vectors = np.asarray(vectors) if vectors.ndim > 2 or vectors.shape[-1] != 3: raise ValueError("Expected input of shape (3,) or (P, 3), " "got {}.".format(vectors.shape)) single_vector = False if vectors.shape == (3,): single_vector = True vectors = vectors[None, :] matrix = self.as_matrix() if self._single: matrix = matrix[None, :, :] n_vectors = vectors.shape[0] n_rotations = len(self._quat) if n_vectors != 1 and n_rotations != 1 and n_vectors != n_rotations: raise ValueError("Expected equal numbers of rotations and vectors " ", or a single rotation, or a single vector, got " "{} rotations and {} vectors.".format( n_rotations, n_vectors)) if inverse: result = np.einsum('ikj,ik->ij', matrix, vectors) else: result = np.einsum('ijk,ik->ij', matrix, vectors) if self._single and single_vector: return result[0] else: return result def __mul__(Rotation self, Rotation other): """Compose this rotation with the other. If `p` and `q` are two rotations, then the composition of 'q followed by p' is equivalent to `p * q`. In terms of rotation matrices, the composition can be expressed as ``p.as_matrix().dot(q.as_matrix())``. Parameters ---------- other : `Rotation` instance Object containing the rotations to be composed with this one. Note that rotation compositions are not commutative, so ``p * q`` is different from ``q * p``. Returns ------- composition : `Rotation` instance This function supports composition of multiple rotations at a time. The following cases are possible: - Either ``p`` or ``q`` contains a single rotation. In this case `composition` contains the result of composing each rotation in the other object with the single rotation. - Both ``p`` and ``q`` contain ``N`` rotations. In this case each rotation ``p[i]`` is composed with the corresponding rotation ``q[i]`` and `output` contains ``N`` rotations. Examples -------- >>> from scipy.spatial.transform import Rotation as R Composition of two single rotations: >>> p = R.from_quat([0, 0, 1, 1]) >>> q = R.from_quat([1, 0, 0, 1]) >>> p.as_matrix() array([[ 0., -1., 0.], [ 1., 0., 0.], [ 0., 0., 1.]]) >>> q.as_matrix() array([[ 1., 0., 0.], [ 0., 0., -1.], [ 0., 1., 0.]]) >>> r = p * q >>> r.as_matrix() array([[0., 0., 1.], [1., 0., 0.], [0., 1., 0.]]) Composition of two objects containing equal number of rotations: >>> p = R.from_quat([[0, 0, 1, 1], [1, 0, 0, 1]]) >>> q = R.from_rotvec([[np.pi/4, 0, 0], [-np.pi/4, 0, np.pi/4]]) >>> p.as_quat() array([[0. , 0. , 0.70710678, 0.70710678], [0.70710678, 0. , 0. , 0.70710678]]) >>> q.as_quat() array([[ 0.38268343, 0. , 0. , 0.92387953], [-0.37282173, 0. , 0.37282173, 0.84971049]]) >>> r = p * q >>> r.as_quat() array([[ 0.27059805, 0.27059805, 0.65328148, 0.65328148], [ 0.33721128, -0.26362477, 0.26362477, 0.86446082]]) """ len_self = len(self._quat) len_other = len(other._quat) if not(len_self == 1 or len_other == 1 or len_self == len_other): raise ValueError("Expected equal number of rotations in both " "or a single rotation in either object, " "got {} rotations in first and {} rotations in " "second object.".format( len(self), len(other))) result = _compose_quat(self._quat, other._quat) if self._single and other._single: result = result[0] return self.__class__(result, normalize=True, copy=False) def inv(self): """Invert this rotation. Composition of a rotation with its inverse results in an identity transformation. Returns ------- inverse : `Rotation` instance Object containing inverse of the rotations in the current instance. Examples -------- >>> from scipy.spatial.transform import Rotation as R Inverting a single rotation: >>> p = R.from_euler('z', 45, degrees=True) >>> q = p.inv() >>> q.as_euler('zyx', degrees=True) array([-45., 0., 0.]) Inverting multiple rotations: >>> p = R.from_rotvec([[0, 0, np.pi/3], [-np.pi/4, 0, 0]]) >>> q = p.inv() >>> q.as_rotvec() array([[-0. , -0. , -1.04719755], [ 0.78539816, -0. , -0. ]]) """ cdef np.ndarray quat = np.array(self._quat, copy=True) quat[:, -1] *= -1 if self._single: quat = quat[0] return self.__class__(quat, copy=False) @cython.boundscheck(False) @cython.wraparound(False) def magnitude(self): """Get the magnitude(s) of the rotation(s). Returns ------- magnitude : ndarray or float Angle(s) in radians, float if object contains a single rotation and ndarray if object contains multiple rotations. Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> r = R.from_quat(np.eye(4)) >>> r.magnitude() array([3.14159265, 3.14159265, 3.14159265, 0. ]) Magnitude of a single rotation: >>> r[0].magnitude() 3.141592653589793 """ cdef double[:, :] quat = self._quat cdef Py_ssize_t num_rotations = quat.shape[0] cdef double[:] angles = _empty1(num_rotations) for ind in range(num_rotations): angles[ind] = 2 * atan2(_norm3(quat[ind, :3]), abs(quat[ind, 3])) if self._single: return angles[0] else: return np.asarray(angles) def mean(self, weights=None): """Get the mean of the rotations. Parameters ---------- weights : array_like shape (N,), optional Weights describing the relative importance of the rotations. If None (default), then all values in `weights` are assumed to be equal. Returns ------- mean : `Rotation` instance Object containing the mean of the rotations in the current instance. Notes ----- The mean used is the chordal L2 mean (also called the projected or induced arithmetic mean). If ``p`` is a set of rotations with mean ``m``, then ``m`` is the rotation which minimizes ``(weights[:, None, None] * (p.as_matrix() - m.as_matrix())**2).sum()``. Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> r = R.from_euler('zyx', [[0, 0, 0], ... [1, 0, 0], ... [0, 1, 0], ... [0, 0, 1]], degrees=True) >>> r.mean().as_euler('zyx', degrees=True) array([0.24945696, 0.25054542, 0.24945696]) """ if weights is None: weights = np.ones(len(self)) else: weights = np.asarray(weights) if weights.ndim != 1: raise ValueError("Expected `weights` to be 1 dimensional, got " "shape {}.".format(weights.shape)) if weights.shape[0] != len(self): raise ValueError("Expected `weights` to have number of values " "equal to number of rotations, got " "{} values and {} rotations.".format( weights.shape[0], len(self))) if np.any(weights < 0): raise ValueError("`weights` must be non-negative.") quat = np.asarray(self._quat) K = np.dot(weights * quat.T, quat) l, v = np.linalg.eigh(K) return self.__class__(v[:, -1], normalize=False) def reduce(self, left=None, right=None, return_indices=False): """Reduce this rotation with the provided rotation groups. Reduction of a rotation ``p`` is a transformation of the form ``q = l * p * r``, where ``l`` and ``r`` are chosen from `left` and `right` respectively, such that rotation ``q`` has the smallest magnitude. If `left` and `right` are rotation groups representing symmetries of two objects rotated by ``p``, then ``q`` is the rotation of the smallest magnitude to align these objects considering their symmetries. Parameters ---------- left : `Rotation` instance, optional Object containing the left rotation(s). Default value (None) corresponds to the identity rotation. right : `Rotation` instance, optional Object containing the right rotation(s). Default value (None) corresponds to the identity rotation. return_indices : bool, optional Whether to return the indices of the rotations from `left` and `right` used for reduction. Returns ------- reduced : `Rotation` instance Object containing reduced rotations. left_best, right_best: integer ndarray Indices of elements from `left` and `right` used for reduction. """ if left is None and right is None: reduced = self.__class__(self._quat, normalize=False, copy=True) if return_indices: return reduced, None, None else: return reduced elif right is None: right = Rotation.identity() elif left is None: left = Rotation.identity() # Levi-Civita tensor for triple product computations e = np.zeros((3, 3, 3)) e[0, 1, 2] = e[1, 2, 0] = e[2, 0, 1] = 1 e[0, 2, 1] = e[2, 1, 0] = e[1, 0, 2] = -1 # We want to calculate the real components of q = l * p * r. It can # be shown that: # qs = ls * ps * rs - ls * dot(pv, rv) - ps * dot(lv, rv) # - rs * dot(lv, pv) - dot(cross(lv, pv), rv) # where ls and lv denote the scalar and vector components of l. def split_rotation(R): q = np.atleast_2d(R.as_quat()) return q[:, -1], q[:, :-1] p = self ps, pv = split_rotation(p) ls, lv = split_rotation(left) rs, rv = split_rotation(right) qs = np.abs(np.einsum('i,j,k', ls, ps, rs) - np.einsum('i,jx,kx', ls, pv, rv) - np.einsum('ix,j,kx', lv, ps, rv) - np.einsum('ix,jx,k', lv, pv, rs) - np.einsum('xyz,ix,jy,kz', e, lv, pv, rv)) qs = np.reshape(np.moveaxis(qs, 1, 0), (qs.shape[1], -1)) # Find best indices from scalar components max_ind = np.argmax(np.reshape(qs, (len(qs), -1)), axis=1) left_best = max_ind // len(rv) right_best = max_ind % len(rv) if not left.single: left = left[left_best] if not right.single: right = right[right_best] # Reduce the rotation using the best indices reduced = left * p * right if self._single: # Reduce the rotation using the best indices reduced = self.__class__(reduced.as_quat()[0], normalize=False) left_best = left_best[0] right_best = right_best[0] if return_indices: if left is None: left_best = None if right is None: right_best = None return reduced, left_best, right_best else: return reduced @classmethod def create_group(cls, group, axis='Z'): """Create a 3D rotation group. Parameters ---------- group : string The name of the group. Must be one of 'I', 'O', 'T', 'Dn', 'Cn', where `n` is a positive integer. The groups are: * I: Icosahedral group * O: Octahedral group * T: Tetrahedral group * D: Dicyclic group * C: Cyclic group axis : integer The cyclic rotation axis. Must be one of ['X', 'Y', 'Z'] (or lowercase). Default is 'Z'. Ignored for groups 'I', 'O', and 'T'. Returns ------- rotation : `Rotation` instance Object containing the elements of the rotation group. Notes ----- This method generates rotation groups only. The full 3-dimensional point groups [PointGroups]_ also contain reflections. References ---------- .. [PointGroups] `Point groups `_ on Wikipedia. """ return create_group(cls, group, axis=axis) def __getitem__(self, indexer): """Extract rotation(s) at given index(es) from object. Create a new `Rotation` instance containing a subset of rotations stored in this object. Parameters ---------- indexer : index, slice, or index array Specifies which rotation(s) to extract. A single indexer must be specified, i.e. as if indexing a 1 dimensional array or list. Returns ------- rotation : `Rotation` instance Contains - a single rotation, if `indexer` is a single index - a stack of rotation(s), if `indexer` is a slice, or and index array. Raises ------ TypeError if the instance was created as a single rotation. Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> r = R.from_quat([ ... [1, 1, 0, 0], ... [0, 1, 0, 1], ... [1, 1, -1, 0]]) >>> r.as_quat() array([[ 0.70710678, 0.70710678, 0. , 0. ], [ 0. , 0.70710678, 0. , 0.70710678], [ 0.57735027, 0.57735027, -0.57735027, 0. ]]) Indexing using a single index: >>> p = r[0] >>> p.as_quat() array([0.70710678, 0.70710678, 0. , 0. ]) Array slicing: >>> q = r[1:3] >>> q.as_quat() array([[ 0. , 0.70710678, 0. , 0.70710678], [ 0.57735027, 0.57735027, -0.57735027, 0. ]]) """ if self._single: raise TypeError("Single rotation is not subscriptable.") return self.__class__(np.asarray(self._quat)[indexer], normalize=False) def __setitem__(self, indexer, value): """Set rotation(s) at given index(es) from object. Parameters ---------- indexer : index, slice, or index array Specifies which rotation(s) to replace. A single indexer must be specified, i.e. as if indexing a 1 dimensional array or list. value : `Rotation` instance The rotations to set. Raises ------ TypeError if the instance was created as a single rotation. Notes ----- .. versionadded:: 1.8.0 """ if self._single: raise TypeError("Single rotation is not subscriptable.") if not isinstance(value, Rotation): raise TypeError("value must be a Rotation object") quat = np.asarray(self._quat) quat[indexer] = value.as_quat() self._quat = quat @classmethod def identity(cls, num=None): """Get identity rotation(s). Composition with the identity rotation has no effect. Parameters ---------- num : int or None, optional Number of identity rotations to generate. If None (default), then a single rotation is generated. Returns ------- identity : Rotation object The identity rotation. """ if num is None: q = [0, 0, 0, 1] else: q = np.zeros((num, 4)) q[:, 3] = 1 return cls(q, normalize=False) @classmethod def random(cls, num=None, random_state=None): """Generate uniformly distributed rotations. Parameters ---------- num : int or None, optional Number of random rotations to generate. If None (default), then a single rotation is generated. random_state : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` or ``RandomState`` instance then that instance is used. Returns ------- random_rotation : `Rotation` instance Contains a single rotation if `num` is None. Otherwise contains a stack of `num` rotations. Notes ----- This function is optimized for efficiently sampling random rotation matrices in three dimensions. For generating random rotation matrices in higher dimensions, see `scipy.stats.special_ortho_group`. Examples -------- >>> from scipy.spatial.transform import Rotation as R Sample a single rotation: >>> R.random().as_euler('zxy', degrees=True) array([-110.5976185 , 55.32758512, 76.3289269 ]) # random Sample a stack of rotations: >>> R.random(5).as_euler('zxy', degrees=True) array([[-110.5976185 , 55.32758512, 76.3289269 ], # random [ -91.59132005, -14.3629884 , -93.91933182], [ 25.23835501, 45.02035145, -121.67867086], [ -51.51414184, -15.29022692, -172.46870023], [ -81.63376847, -27.39521579, 2.60408416]]) See Also -------- scipy.stats.special_ortho_group """ random_state = check_random_state(random_state) if num is None: sample = random_state.normal(size=4) else: sample = random_state.normal(size=(num, 4)) return cls(sample) @classmethod def align_vectors(cls, a, b, weights=None, return_sensitivity=False): """Estimate a rotation to optimally align two sets of vectors. Find a rotation between frames A and B which best aligns a set of vectors `a` and `b` observed in these frames. The following loss function is minimized to solve for the rotation matrix :math:`C`: .. math:: L(C) = \\frac{1}{2} \\sum_{i = 1}^{n} w_i \\lVert \\mathbf{a}_i - C \\mathbf{b}_i \\rVert^2 , where :math:`w_i`'s are the `weights` corresponding to each vector. The rotation is estimated with Kabsch algorithm [1]_. Parameters ---------- a : array_like, shape (N, 3) Vector components observed in initial frame A. Each row of `a` denotes a vector. b : array_like, shape (N, 3) Vector components observed in another frame B. Each row of `b` denotes a vector. weights : array_like shape (N,), optional Weights describing the relative importance of the vector observations. If None (default), then all values in `weights` are assumed to be 1. return_sensitivity : bool, optional Whether to return the sensitivity matrix. See Notes for details. Default is False. Returns ------- estimated_rotation : `Rotation` instance Best estimate of the rotation that transforms `b` to `a`. rmsd : float Root mean square distance (weighted) between the given set of vectors after alignment. It is equal to ``sqrt(2 * minimum_loss)``, where ``minimum_loss`` is the loss function evaluated for the found optimal rotation. sensitivity_matrix : ndarray, shape (3, 3) Sensitivity matrix of the estimated rotation estimate as explained in Notes. Returned only when `return_sensitivity` is True. Notes ----- This method can also compute the sensitivity of the estimated rotation to small perturbations of the vector measurements. Specifically we consider the rotation estimate error as a small rotation vector of frame A. The sensitivity matrix is proportional to the covariance of this rotation vector assuming that the vectors in `a` was measured with errors significantly less than their lengths. To get the true covariance matrix, the returned sensitivity matrix must be multiplied by harmonic mean [3]_ of variance in each observation. Note that `weights` are supposed to be inversely proportional to the observation variances to get consistent results. For example, if all vectors are measured with the same accuracy of 0.01 (`weights` must be all equal), then you should multiple the sensitivity matrix by 0.01**2 to get the covariance. Refer to [2]_ for more rigorous discussion of the covariance estimation. References ---------- .. [1] https://en.wikipedia.org/wiki/Kabsch_algorithm .. [2] F. Landis Markley, "Attitude determination using vector observations: a fast optimal matrix algorithm", Journal of Astronautical Sciences, Vol. 41, No.2, 1993, pp. 261-280. .. [3] https://en.wikipedia.org/wiki/Harmonic_mean """ a = np.asarray(a) if a.ndim != 2 or a.shape[-1] != 3: raise ValueError("Expected input `a` to have shape (N, 3), " "got {}".format(a.shape)) b = np.asarray(b) if b.ndim != 2 or b.shape[-1] != 3: raise ValueError("Expected input `b` to have shape (N, 3), " "got {}.".format(b.shape)) if a.shape != b.shape: raise ValueError("Expected inputs `a` and `b` to have same shapes" ", got {} and {} respectively.".format( a.shape, b.shape)) if weights is None: weights = np.ones(len(b)) else: weights = np.asarray(weights) if weights.ndim != 1: raise ValueError("Expected `weights` to be 1 dimensional, got " "shape {}.".format(weights.shape)) if weights.shape[0] != b.shape[0]: raise ValueError("Expected `weights` to have number of values " "equal to number of input vectors, got " "{} values and {} vectors.".format( weights.shape[0], b.shape[0])) if (weights < 0).any(): raise ValueError("`weights` may not contain negative values") B = np.einsum('ji,jk->ik', weights[:, None] * a, b) u, s, vh = np.linalg.svd(B) # Correct improper rotation if necessary (as in Kabsch algorithm) if np.linalg.det(u @ vh) < 0: s[-1] = -s[-1] u[:, -1] = -u[:, -1] C = np.dot(u, vh) if s[1] + s[2] < 1e-16 * s[0]: warnings.warn("Optimal rotation is not uniquely or poorly defined " "for the given sets of vectors.") rmsd = np.sqrt(max( np.sum(weights * np.sum(b ** 2 + a ** 2, axis=1)) - 2 * np.sum(s), 0)) if return_sensitivity: zeta = (s[0] + s[1]) * (s[1] + s[2]) * (s[2] + s[0]) kappa = s[0] * s[1] + s[1] * s[2] + s[2] * s[0] with np.errstate(divide='ignore', invalid='ignore'): sensitivity = np.mean(weights) / zeta * ( kappa * np.eye(3) + np.dot(B, B.T)) return cls.from_matrix(C), rmsd, sensitivity else: return cls.from_matrix(C), rmsd class Slerp: """Spherical Linear Interpolation of Rotations. The interpolation between consecutive rotations is performed as a rotation around a fixed axis with a constant angular velocity [1]_. This ensures that the interpolated rotations follow the shortest path between initial and final orientations. Parameters ---------- times : array_like, shape (N,) Times of the known rotations. At least 2 times must be specified. rotations : `Rotation` instance Rotations to perform the interpolation between. Must contain N rotations. Methods ------- __call__ See Also -------- Rotation Notes ----- .. versionadded:: 1.2.0 References ---------- .. [1] https://en.wikipedia.org/wiki/Slerp#Quaternion_Slerp Examples -------- >>> from scipy.spatial.transform import Rotation as R >>> from scipy.spatial.transform import Slerp Setup the fixed keyframe rotations and times: >>> key_rots = R.random(5, random_state=2342345) >>> key_times = [0, 1, 2, 3, 4] Create the interpolator object: >>> slerp = Slerp(key_times, key_rots) Interpolate the rotations at the given times: >>> times = [0, 0.5, 0.25, 1, 1.5, 2, 2.75, 3, 3.25, 3.60, 4] >>> interp_rots = slerp(times) The keyframe rotations expressed as Euler angles: >>> key_rots.as_euler('xyz', degrees=True) array([[ 14.31443779, -27.50095894, -3.7275787 ], [ -1.79924227, -24.69421529, 164.57701743], [146.15020772, 43.22849451, -31.34891088], [ 46.39959442, 11.62126073, -45.99719267], [-88.94647804, -49.64400082, -65.80546984]]) The interpolated rotations expressed as Euler angles. These agree with the keyframe rotations at both endpoints of the range of keyframe times. >>> interp_rots.as_euler('xyz', degrees=True) array([[ 14.31443779, -27.50095894, -3.7275787 ], [ 4.74588574, -32.44683966, 81.25139984], [ 10.71094749, -31.56690154, 38.06896408], [ -1.79924227, -24.69421529, 164.57701743], [ 11.72796022, 51.64207311, -171.7374683 ], [ 146.15020772, 43.22849451, -31.34891088], [ 68.10921869, 20.67625074, -48.74886034], [ 46.39959442, 11.62126073, -45.99719267], [ 12.35552615, 4.21525086, -64.89288124], [ -30.08117143, -19.90769513, -78.98121326], [ -88.94647804, -49.64400082, -65.80546984]]) """ def __init__(self, times, rotations): if rotations.single: raise ValueError("`rotations` must be a sequence of rotations.") if len(rotations) == 1: raise ValueError("`rotations` must contain at least 2 " "rotations.") times = np.asarray(times) if times.ndim != 1: raise ValueError("Expected times to be specified in a 1 " "dimensional array, got {} " "dimensions.".format(times.ndim)) if times.shape[0] != len(rotations): raise ValueError("Expected number of rotations to be equal to " "number of timestamps given, got {} rotations " "and {} timestamps.".format( len(rotations), times.shape[0])) self.times = times self.timedelta = np.diff(times) if np.any(self.timedelta <= 0): raise ValueError("Times must be in strictly increasing order.") self.rotations = rotations[:-1] self.rotvecs = (self.rotations.inv() * rotations[1:]).as_rotvec() def __call__(self, times): """Interpolate rotations. Compute the interpolated rotations at the given `times`. Parameters ---------- times : array_like Times to compute the interpolations at. Can be a scalar or 1-dimensional. Returns ------- interpolated_rotation : `Rotation` instance Object containing the rotations computed at given `times`. """ # Clearly differentiate from self.times property compute_times = np.asarray(times) if compute_times.ndim > 1: raise ValueError("`times` must be at most 1-dimensional.") single_time = compute_times.ndim == 0 compute_times = np.atleast_1d(compute_times) # side = 'left' (default) excludes t_min. ind = np.searchsorted(self.times, compute_times) - 1 # Include t_min. Without this step, index for t_min equals -1 ind[compute_times == self.times[0]] = 0 if np.any(np.logical_or(ind < 0, ind > len(self.rotations) - 1)): raise ValueError("Interpolation times must be within the range " "[{}, {}], both inclusive.".format( self.times[0], self.times[-1])) alpha = (compute_times - self.times[ind]) / self.timedelta[ind] result = (self.rotations[ind] * Rotation.from_rotvec(self.rotvecs[ind] * alpha[:, None])) if single_time: result = result[0] return result