This is the ARPACK package from http://www.caam.rice.edu/software/ARPACK/ Specifically the files are from http://www.caam.rice.edu/software/ARPACK/SRC/arpack96.tar.gz with the patch http://www.caam.rice.edu/software/ARPACK/SRC/patch.tar.gz The ARPACK README is at http://www.caam.rice.edu/software/ARPACK/SRC/readme.arpack --- ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems. The package is designed to compute a few eigenvalues and corresponding eigenvectors of a general n by n matrix A. It is most appropriate for large sparse or structured matrices A where structured means that a matrix-vector product w <- Av requires order n rather than the usual order n**2 floating point operations. This software is based upon an algorithmic variant of the Arnoldi process called the Implicitly Restarted Arnoldi Method (IRAM). When the matrix A is symmetric it reduces to a variant of the Lanczos process called the Implicitly Restarted Lanczos Method (IRLM). These variants may be viewed as a synthesis of the Arnoldi/Lanczos process with the Implicitly Shifted QR technique that is suitable for large scale problems. For many standard problems, a matrix factorization is not required. Only the action of the matrix on a vector is needed. ARPACK software is capable of solving large scale symmetric, nonsymmetric, and generalized eigenproblems from significant application areas. The software is designed to compute a few (k) eigenvalues with user specified features such as those of largest real part or largest magnitude. Storage requirements are on the order of n*k locations. No auxiliary storage is required. A set of Schur basis vectors for the desired k-dimensional eigen-space is computed which is numerically orthogonal to working precision. Numerically accurate eigenvectors are available on request. Important Features: o Reverse Communication Interface. o Single and Double Precision Real Arithmetic Versions for Symmetric, Non-symmetric, Standard or Generalized Problems. o Single and Double Precision Complex Arithmetic Versions for Standard or Generalized Problems. o Routines for Banded Matrices - Standard or Generalized Problems. o Routines for The Singular Value Decomposition. o Example driver routines that may be used as templates to implement numerous Shift-Invert strategies for all problem types, data types and precision. --- The ARPACK license is the BSD 3-clause license ("New BSD License") http://www.caam.rice.edu/software/ARPACK/RiceBSD.txt --- BSD Software License Pertains to ARPACK and P_ARPACK Copyright (c) 1996-2008 Rice University. Developed by D.C. Sorensen, R.B. Lehoucq, C. Yang, and K. Maschhoff. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer listed in this license in the documentation and/or other materials provided with the distribution. - Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.