/* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This code implements the shortest augmenting path algorithm for the rectangular assignment problem. This implementation is based on the pseudocode described in pages 1685-1686 of: DF Crouse. On implementing 2D rectangular assignment algorithms. IEEE Transactions on Aerospace and Electronic Systems 52(4):1679-1696, August 2016 doi: 10.1109/TAES.2016.140952 Author: PM Larsen */ #include #include #include #include #include "rectangular_lsap.h" template std::vector argsort_iter(const std::vector &v) { std::vector index(v.size()); std::iota(index.begin(), index.end(), 0); std::sort(index.begin(), index.end(), [&v](intptr_t i, intptr_t j) {return v[i] < v[j];}); return index; } static intptr_t augmenting_path(intptr_t nc, double *cost, std::vector& u, std::vector& v, std::vector& path, std::vector& row4col, std::vector& shortestPathCosts, intptr_t i, std::vector& SR, std::vector& SC, std::vector& remaining, double* p_minVal) { double minVal = 0; // Crouse's pseudocode uses set complements to keep track of remaining // nodes. Here we use a vector, as it is more efficient in C++. intptr_t num_remaining = nc; for (intptr_t it = 0; it < nc; it++) { // Filling this up in reverse order ensures that the solution of a // constant cost matrix is the identity matrix (c.f. #11602). remaining[it] = nc - it - 1; } std::fill(SR.begin(), SR.end(), false); std::fill(SC.begin(), SC.end(), false); std::fill(shortestPathCosts.begin(), shortestPathCosts.end(), INFINITY); // find shortest augmenting path intptr_t sink = -1; while (sink == -1) { intptr_t index = -1; double lowest = INFINITY; SR[i] = true; for (intptr_t it = 0; it < num_remaining; it++) { intptr_t j = remaining[it]; double r = minVal + cost[i * nc + j] - u[i] - v[j]; if (r < shortestPathCosts[j]) { path[j] = i; shortestPathCosts[j] = r; } // When multiple nodes have the minimum cost, we select one which // gives us a new sink node. This is particularly important for // integer cost matrices with small co-efficients. if (shortestPathCosts[j] < lowest || (shortestPathCosts[j] == lowest && row4col[j] == -1)) { lowest = shortestPathCosts[j]; index = it; } } minVal = lowest; if (minVal == INFINITY) { // infeasible cost matrix return -1; } intptr_t j = remaining[index]; if (row4col[j] == -1) { sink = j; } else { i = row4col[j]; } SC[j] = true; remaining[index] = remaining[--num_remaining]; } *p_minVal = minVal; return sink; } static int solve(intptr_t nr, intptr_t nc, double* cost, bool maximize, int64_t* a, int64_t* b) { // handle trivial inputs if (nr == 0 || nc == 0) { return 0; } // tall rectangular cost matrix must be transposed bool transpose = nc < nr; // make a copy of the cost matrix if we need to modify it std::vector temp; if (transpose || maximize) { temp.resize(nr * nc); if (transpose) { for (intptr_t i = 0; i < nr; i++) { for (intptr_t j = 0; j < nc; j++) { temp[j * nr + i] = cost[i * nc + j]; } } std::swap(nr, nc); } else { std::copy(cost, cost + nr * nc, temp.begin()); } // negate cost matrix for maximization if (maximize) { for (intptr_t i = 0; i < nr * nc; i++) { temp[i] = -temp[i]; } } cost = temp.data(); } // test for NaN and -inf entries for (intptr_t i = 0; i < nr * nc; i++) { if (cost[i] != cost[i] || cost[i] == -INFINITY) { return RECTANGULAR_LSAP_INVALID; } } // initialize variables std::vector u(nr, 0); std::vector v(nc, 0); std::vector shortestPathCosts(nc); std::vector path(nc, -1); std::vector col4row(nr, -1); std::vector row4col(nc, -1); std::vector SR(nr); std::vector SC(nc); std::vector remaining(nc); // iteratively build the solution for (intptr_t curRow = 0; curRow < nr; curRow++) { double minVal; intptr_t sink = augmenting_path(nc, cost, u, v, path, row4col, shortestPathCosts, curRow, SR, SC, remaining, &minVal); if (sink < 0) { return RECTANGULAR_LSAP_INFEASIBLE; } // update dual variables u[curRow] += minVal; for (intptr_t i = 0; i < nr; i++) { if (SR[i] && i != curRow) { u[i] += minVal - shortestPathCosts[col4row[i]]; } } for (intptr_t j = 0; j < nc; j++) { if (SC[j]) { v[j] -= minVal - shortestPathCosts[j]; } } // augment previous solution intptr_t j = sink; while (1) { intptr_t i = path[j]; row4col[j] = i; std::swap(col4row[i], j); if (i == curRow) { break; } } } if (transpose) { intptr_t i = 0; for (auto v: argsort_iter(col4row)) { a[i] = col4row[v]; b[i] = v; i++; } } else { for (intptr_t i = 0; i < nr; i++) { a[i] = i; b[i] = col4row[i]; } } return 0; } #ifdef __cplusplus extern "C" { #endif int solve_rectangular_linear_sum_assignment(intptr_t nr, intptr_t nc, double* input_cost, bool maximize, int64_t* a, int64_t* b) { return solve(nr, nc, input_cost, maximize, a, b); } #ifdef __cplusplus } #endif