import numpy as np import matplotlib.pyplot as plt from scipy import stats x1 = np.array([-7, -5, 1, 4, 5], dtype=float) x_eval = np.linspace(-10, 10, num=200) kde1 = stats.gaussian_kde(x1) kde2 = stats.gaussian_kde(x1, bw_method='silverman') def my_kde_bandwidth(obj, fac=1./5): """We use Scott's Rule, multiplied by a constant factor.""" return np.power(obj.n, -1./(obj.d+4)) * fac fig = plt.figure() ax = fig.add_subplot(111) ax.plot(x1, np.zeros(x1.shape), 'b+', ms=20) # rug plot kde3 = stats.gaussian_kde(x1, bw_method=my_kde_bandwidth) ax.plot(x_eval, kde3(x_eval), 'g-', label="With smaller BW") plt.show()