.. _continuous-kstwo: KStwo Distribution ================== This is the distribution of the maximum absolute differences between an empirical distribution function, computed from :math:`n` samples or observations, and a comparison (or target) cumulative distribution function, which is assumed to be continuous. (The "two" in the name is because this is the two-sided difference. ``ksone`` is the distribution of the positive differences, :math:`D_n^+`, hence it concerns one-sided differences. ``kstwobign`` is the limiting distribution of the *normalized* maximum absolute differences :math:`\sqrt{n} D_n`.) Writing :math:`D_n = \sup_t \left|F_{empirical,n}(t)-F_{target}(t)\right|`, ``kstwo`` is the distribution of the :math:`D_n` values. ``kstwo`` can also be used with the differences between two empirical distribution functions, for sets of observations with :math:`m` and :math:`n` samples respectively. Writing :math:`D_{m,n} = \sup_t \left|F_{1,m}(t)-F_{2,n}(t)\right|`, where :math:`F_{1,m}` and :math:`F_{2,n}` are the two empirical distribution functions, then :math:`Pr(D_{m,n} \le x) \approx Pr(D_N \le x)` under appropriate conditions, where :math:`N = \sqrt{\left(\frac{mn}{m+n}\right)}`. There is one shape parameter :math:`n`, a positive integer, and the support is :math:`x\in\left[0,1\right]`. The implementation follows Simard & L'Ecuyer, which combines exact algorithms of Durbin and Pomeranz with asymptotic estimates of Li-Chien, Pelz and Good to compute the CDF with 5-15 accurate digits. Examples -------- >>> from scipy.stats import kstwo Show the probability of a gap at least as big as 0, 0.5 and 1.0 for a sample of size 5 >>> kstwo.sf([0, 0.5, 1.0], 5) array([1. , 0.112, 0. ]) Compare a sample of size 5 drawn from a source N(0.5, 1) distribution against a target N(0, 1) CDF. >>> from scipy.stats import norm >>> n = 5 >>> gendist = norm(0.5, 1) # Normal distribution, mean 0.5, stddev 1 >>> x = np.sort(gendist.rvs(size=n, random_state=np.random.default_rng())) >>> x array([-1.59113056, -0.66335147, 0.54791569, 0.78009321, 1.27641365]) >>> target = norm(0, 1) >>> cdfs = target.cdf(x) >>> cdfs array([0.0557901 , 0.25355274, 0.7081251 , 0.78233199, 0.89909533]) # Construct the Empirical CDF and the K-S statistics (Dn+, Dn-, Dn) >>> ecdfs = np.arange(n+1, dtype=float)/n >>> cols = np.column_stack([x, ecdfs[1:], cdfs, cdfs - ecdfs[:n], ecdfs[1:] - cdfs]) >>> np.set_printoptions(precision=3) >>> cols array([[-1.591, 0.2 , 0.056, 0.056, 0.144], [-0.663, 0.4 , 0.254, 0.054, 0.146], [ 0.548, 0.6 , 0.708, 0.308, -0.108], [ 0.78 , 0.8 , 0.782, 0.182, 0.018], [ 1.276, 1. , 0.899, 0.099, 0.101]]) >>> gaps = cols[:, -2:] >>> Dnpm = np.max(gaps, axis=0) >>> Dn = np.max(Dnpm) >>> iminus, iplus = np.argmax(gaps, axis=0) >>> print('Dn- = %f (at x=%.2f)' % (Dnpm[0], x[iminus])) Dn- = 0.308125 (at x=0.55) >>> print('Dn+ = %f (at x=%.2f)' % (Dnpm[1], x[iplus])) Dn+ = 0.146447 (at x=-0.66) >>> print('Dn = %f' % (Dn)) Dn = 0.308125 >>> probs = kstwo.sf(Dn, n) >>> print(chr(10).join(['For a sample of size %d drawn from a N(0, 1) distribution:' % n, ... ' Kolmogorov-Smirnov 2-sided n=%d: Prob(Dn >= %f) = %.4f' % (n, Dn, probs)])) For a sample of size 5 drawn from a N(0, 1) distribution: Kolmogorov-Smirnov 2-sided n=5: Prob(Dn >= 0.308125) = 0.6319 Plot the Empirical CDF against the target N(0, 1) CDF >>> import matplotlib.pyplot as plt >>> plt.step(np.concatenate([[-3], x]), ecdfs, where='post', label='Empirical CDF') >>> x3 = np.linspace(-3, 3, 100) >>> plt.plot(x3, target.cdf(x3), label='CDF for N(0, 1)') >>> plt.ylim([0, 1]); plt.grid(True); plt.legend(); >>> plt.vlines([x[iminus]], ecdfs[iminus], cdfs[iminus], color='r', linestyle='solid', lw=4) >>> plt.vlines([x[iplus]], cdfs[iplus], ecdfs[iplus+1], color='m', linestyle='solid', lw=4) >>> plt.annotate('Dn-', xy=(x[iminus], (ecdfs[iminus]+ cdfs[iminus])/2), ... xytext=(x[iminus]+1, (ecdfs[iminus]+ cdfs[iminus])/2 - 0.02), ... arrowprops=dict(facecolor='white', edgecolor='r', shrink=0.05), size=15, color='r'); >>> plt.annotate('Dn+', xy=(x[iplus], (ecdfs[iplus+1]+ cdfs[iplus])/2), ... xytext=(x[iplus]-2, (ecdfs[iplus+1]+ cdfs[iplus])/2 - 0.02), ... arrowprops=dict(facecolor='white', edgecolor='m', shrink=0.05), size=15, color='m'); >>> plt.show() References ---------- - "Kolmogorov-Smirnov test", Wikipedia https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test - Durbin J. "The Probability that the Sample Distribution Function Lies Between Two Parallel Straight Lines." *Ann. Math. Statist*., 39 (1968) 39, 398-411. - Pomeranz J. "Exact Cumulative Distribution of the Kolmogorov-Smirnov Statistic for Small Samples (Algorithm 487)." *Communications of the ACM*, 17(12), (1974) 703-704. - Li-Chien, C. "On the exact distribution of the statistics of A. N. Kolmogorov and their asymptotic expansion." *Acta Matematica Sinica*, 6, (1956) 55-81. - Pelz W, Good IJ. "Approximating the Lower Tail-areas of the Kolmogorov-Smirnov One-sample Statistic." *Journal of the Royal Statistical Society*, Series B, (1976) 38(2), 152-156. - Simard, R., L'Ecuyer, P. "Computing the Two-Sided Kolmogorov-Smirnov Distribution", *Journal of Statistical Software*, Vol 39, (2011) 11. Implementation: `scipy.stats.kstwo`