.. _continuous-random-variables: ==================================== Continuous Statistical Distributions ==================================== Overview ======== All distributions will have location (L) and Scale (S) parameters along with any shape parameters needed, the names for the shape parameters will vary. Standard form for the distributions will be given where :math:`L=0.0` and :math:`S=1.0.` The nonstandard forms can be obtained for the various functions using (note :math:`U` is a standard uniform random variate). ====================================== ============================================================================= ========================================================================================================================================= Function Name Standard Function Transformation ====================================== ============================================================================= ========================================================================================================================================= Cumulative Distribution Function (CDF) :math:`F\left(x\right)` :math:`F\left(x;L,S\right)=F\left(\frac{\left(x-L\right)}{S}\right)` Probability Density Function (PDF) :math:`f\left(x\right)=F^{\prime}\left(x\right)` :math:`f\left(x;L,S\right)=\frac{1}{S}f\left(\frac{\left(x-L\right)}{S}\right)` Percent Point Function (PPF) :math:`G\left(q\right)=F^{-1}\left(q\right)` :math:`G\left(q;L,S\right)=L+SG\left(q\right)` Probability Sparsity Function (PSF) :math:`g\left(q\right)=G^{\prime}\left(q\right)` :math:`g\left(q;L,S\right)=Sg\left(q\right)` Hazard Function (HF) :math:`h_{a}\left(x\right)=\frac{f\left(x\right)}{1-F\left(x\right)}` :math:`h_{a}\left(x;L,S\right)=\frac{1}{S}h_{a}\left(\frac{\left(x-L\right)}{S}\right)` Cumulative Hazard Function (CHF) :math:`H_{a}\left(x\right)=` :math:`\log\frac{1}{1-F\left(x\right)}` :math:`H_{a}\left(x;L,S\right)=H_{a}\left(\frac{\left(x-L\right)}{S}\right)` Survival Function (SF) :math:`S\left(x\right)=1-F\left(x\right)` :math:`S\left(x;L,S\right)=S\left(\frac{\left(x-L\right)}{S}\right)` Inverse Survival Function (ISF) :math:`Z\left(\alpha\right)=S^{-1}\left(\alpha\right)=G\left(1-\alpha\right)` :math:`Z\left(\alpha;L,S\right)=L+SZ\left(\alpha\right)` Moment Generating Function (MGF) :math:`M_{Y}\left(t\right)=E\left[e^{Yt}\right]` :math:`M_{X}\left(t\right)=e^{Lt}M_{Y}\left(St\right)` Random Variates :math:`Y=G\left(U\right)` :math:`X=L+SY` (Differential) Entropy :math:`h\left[Y\right]=-\int f\left(y\right)\log f\left(y\right)dy` :math:`h\left[X\right]=h\left[Y\right]+\log S` (Non-central) Moments :math:`\mu_{n}^{\prime}=E\left[Y^{n}\right]` :math:`E\left[X^{n}\right]=L^{n}\sum_{k=0}^{N}\left(\begin{array}{c} n\\ k\end{array}\right)\left(\frac{S}{L}\right)^{k}\mu_{k}^{\prime}` Central Moments :math:`\mu_{n}=E\left[\left(Y-\mu\right)^{n}\right]` :math:`E\left[\left(X-\mu_{X}\right)^{n}\right]=S^{n}\mu_{n}` mean (mode, median), var :math:`\mu,\,\mu_{2}` :math:`L+S\mu,\, S^{2}\mu_{2}` skewness :math:`\gamma_{1}=\frac{\mu_{3}}{\left(\mu_{2}\right)^{3/2}}` :math:`\gamma_{1}` kurtosis :math:`\gamma_{2}=\frac{\mu_{4}}{\left(\mu_{2}\right)^{2}}-3` :math:`\gamma_{2}` ====================================== ============================================================================= ========================================================================================================================================= Moments ------- Non-central moments are defined using the PDF .. math:: \mu_{n}^{\prime}=\int_{-\infty}^{\infty}x^{n}f\left(x\right)dx. Note, that these can always be computed using the PPF. Substitute :math:`x=G\left(q\right)` in the above equation and get .. math:: \mu_{n}^{\prime}=\int_{0}^{1}G^{n}\left(q\right)dq which may be easier to compute numerically. Note that :math:`q=F\left(x\right)` so that :math:`dq=f\left(x\right)dx.` Central moments are computed similarly :math:`\mu=\mu_{1}^{\prime}` .. math:: :nowrap: \begin{eqnarray*} \mu_{n} & = & \int_{-\infty}^{\infty}\left(x-\mu\right)^{n}f\left(x\right)dx\\ & = & \int_{0}^{1}\left(G\left(q\right)-\mu\right)^{n}dq\\ & = & \sum_{k=0}^{n}\left(\begin{array}{c} n\\ k\end{array}\right)\left(-\mu\right)^{k}\mu_{n-k}^{\prime}\end{eqnarray*} In particular .. math:: :nowrap: \begin{eqnarray*} \mu_{3} & = & \mu_{3}^{\prime}-3\mu\mu_{2}^{\prime}+2\mu^{3}\\ & = & \mu_{3}^{\prime}-3\mu\mu_{2}-\mu^{3}\\ \mu_{4} & = & \mu_{4}^{\prime}-4\mu\mu_{3}^{\prime}+6\mu^{2}\mu_{2}^{\prime}-3\mu^{4}\\ & = & \mu_{4}^{\prime}-4\mu\mu_{3}-6\mu^{2}\mu_{2}-\mu^{4}\end{eqnarray*} Skewness is defined as .. math:: \gamma_{1}=\sqrt{\beta_{1}}=\frac{\mu_{3}}{\mu_{2}^{3/2}} while (Fisher) kurtosis is .. math:: \gamma_{2}=\frac{\mu_{4}}{\mu_{2}^{2}}-3, so that a normal distribution has a kurtosis of zero. Median and mode --------------- The median, :math:`m_{n}` is defined as the point at which half of the density is on one side and half on the other. In other words, :math:`F\left(m_{n}\right)=\frac{1}{2}` so that .. math:: m_{n}=G\left(\frac{1}{2}\right). In addition, the mode, :math:`m_{d}` , is defined as the value for which the probability density function reaches it's peak .. math:: m_{d}=\arg\max_{x}f\left(x\right). Fitting data ------------ To fit data to a distribution, maximizing the likelihood function is common. Alternatively, some distributions have well-known minimum variance unbiased estimators. These will be chosen by default, but the likelihood function will always be available for minimizing. If :math:`f\left(x;\boldsymbol{\theta}\right)` is the PDF of a random-variable where :math:`\boldsymbol{\theta}` is a vector of parameters ( *e.g.* :math:`L` and :math:`S` ), then for a collection of :math:`N` independent samples from this distribution, the joint distribution the random vector :math:`\mathbf{x}` is .. math:: f\left(\mathbf{x};\boldsymbol{\theta}\right)=\prod_{i=1}^{N}f\left(x_{i};\boldsymbol{\theta}\right). The maximum likelihood estimate of the parameters :math:`\boldsymbol{\theta}` are the parameters which maximize this function with :math:`\mathbf{x}` fixed and given by the data: .. math:: :nowrap: \begin{eqnarray*} \boldsymbol{\theta}_{es} & = & \arg\max_{\boldsymbol{\theta}}f\left(\mathbf{x};\boldsymbol{\theta}\right)\\ & = & \arg\min_{\boldsymbol{\theta}}l_{\mathbf{x}}\left(\boldsymbol{\theta}\right).\end{eqnarray*} Where .. math:: :nowrap: \begin{eqnarray*} l_{\mathbf{x}}\left(\boldsymbol{\theta}\right) & = & -\sum_{i=1}^{N}\log f\left(x_{i};\boldsymbol{\theta}\right)\\ & = & -N\overline{\log f\left(x_{i};\boldsymbol{\theta}\right)}\end{eqnarray*} Note that if :math:`\boldsymbol{\theta}` includes only shape parameters, the location and scale-parameters can be fit by replacing :math:`x_{i}` with :math:`\left(x_{i}-L\right)/S` in the log-likelihood function adding :math:`N\log S` and minimizing, thus .. math:: :nowrap: \begin{eqnarray*} l_{\mathbf{x}}\left(L,S;\boldsymbol{\theta}\right) & = & N\log S-\sum_{i=1}^{N}\log f\left(\frac{x_{i}-L}{S};\boldsymbol{\theta}\right)\\ & = & N\log S+l_{\frac{\mathbf{x}-S}{L}}\left(\boldsymbol{\theta}\right)\end{eqnarray*} If desired, sample estimates for :math:`L` and :math:`S` (not necessarily maximum likelihood estimates) can be obtained from samples estimates of the mean and variance using .. math:: :nowrap: \begin{eqnarray*} \hat{S} & = & \sqrt{\frac{\hat{\mu}_{2}}{\mu_{2}}}\\ \hat{L} & = & \hat{\mu}-\hat{S}\mu\end{eqnarray*} where :math:`\mu` and :math:`\mu_{2}` are assumed known as the mean and variance of the **untransformed** distribution (when :math:`L=0` and :math:`S=1` ) and .. math:: :nowrap: \begin{eqnarray*} \hat{\mu} & = & \frac{1}{N}\sum_{i=1}^{N}x_{i}=\bar{\mathbf{x}}\\ \hat{\mu}_{2} & = & \frac{1}{N-1}\sum_{i=1}^{N}\left(x_{i}-\hat{\mu}\right)^{2}=\frac{N}{N-1}\overline{\left(\mathbf{x}-\bar{\mathbf{x}}\right)^{2}}\end{eqnarray*} Standard notation for mean -------------------------- We will use .. math:: \overline{y\left(\mathbf{x}\right)}=\frac{1}{N}\sum_{i=1}^{N}y\left(x_{i}\right) where :math:`N` should be clear from context as the number of samples :math:`x_{i}` References ---------- - Documentation for ranlib, rv2, cdflib - Eric Weisstein's world of mathematics http://mathworld.wolfram.com/, http://mathworld.wolfram.com/topics/StatisticalDistributions.html - Documentation to Regress+ by Michael McLaughlin item Engineering and Statistics Handbook (NIST), https://www.itl.nist.gov/div898/handbook/ - Documentation for DATAPLOT from NIST, https://www.itl.nist.gov/div898/software/dataplot/distribu.htm - Norman Johnson, Samuel Kotz, and N. Balakrishnan Continuous Univariate Distributions, second edition, Volumes I and II, Wiley & Sons, 1994. In the tutorials several special functions appear repeatedly and are listed here. =============================================================== ====================================================================================== ============================================================================================================================= Symbol Description Definition =============================================================== ====================================================================================== ============================================================================================================================= :math:`\gamma\left(s, x\right)` lower incomplete Gamma function :math:`\int_0^x t^{s-1} e^{-t} dt` :math:`\Gamma\left(s, x\right)` upper incomplete Gamma function :math:`\int_x^\infty t^{s-1} e^{-t} dt` :math:`B\left(x;a,b\right)` incomplete Beta function :math:`\int_{0}^{x} t^{a-1}\left(1-t\right)^{b-1} dt` :math:`I\left(x;a,b\right)` regularized incomplete Beta function :math:`\frac{\Gamma\left(a+b\right)}{\Gamma\left(a\right)\Gamma\left(b\right)} \int_{0}^{x} t^{a-1}\left(1-t\right)^{b-1} dt` :math:`\phi\left(x\right)` PDF for normal distribution :math:`\frac{1}{\sqrt{2\pi}}e^{-x^{2}/2}` :math:`\Phi\left(x\right)` CDF for normal distribution :math:`\int_{-\infty}^{x}\phi\left(t\right) dt = \frac{1}{2}+\frac{1}{2}\mathrm{erf}\left(\frac{x}{\sqrt{2}}\right)` :math:`\psi\left(z\right)` digamma function :math:`\frac{d}{dz} \log\left(\Gamma\left(z\right)\right)` :math:`\psi_{n}\left(z\right)` polygamma function :math:`\frac{d^{n+1}}{dz^{n+1}}\log\left(\Gamma\left(z\right)\right)` :math:`I_{\nu}\left(y\right)` modified Bessel function of the first kind :math:`\mathrm{Ei}(\mathrm{z})` exponential integral :math:`-\int_{-x}^\infty \frac{e^{-t}}{t} dt` :math:`\zeta\left(n\right)` Riemann zeta function :math:`\sum_{k=1}^{\infty} \frac{1}{k^{n}}` :math:`\zeta\left(n,z\right)` Hurwitz zeta function :math:`\sum_{k=0}^{\infty} \frac{1}{\left(k+z\right)^{n}}` :math:`\,{}_{p}F_{q}(a_{1},\ldots,a_{p};b_{1},\ldots,b_{q};z)` Hypergeometric function :math:`\sum_{n=0}^{\infty} {\frac{(a_{1})_{n}\cdots(a_{p})_{n}}{(b_{1})_{n}\cdots(b_{q})_{n}}} \,{\frac{z^{n}}{n!}}` =============================================================== ====================================================================================== ============================================================================================================================= Continuous Distributions in `scipy.stats` ----------------------------------------- .. toctree:: :maxdepth: 1 continuous_alpha continuous_anglit continuous_arcsine continuous_beta continuous_betaprime continuous_bradford continuous_burr continuous_burr12 continuous_cauchy continuous_skewcauchy continuous_chi continuous_chi2 continuous_cosine continuous_dgamma continuous_dweibull continuous_erlang continuous_expon continuous_exponweib continuous_exponpow continuous_fatiguelife continuous_fisk continuous_foldcauchy continuous_foldnorm continuous_f continuous_gamma continuous_genlogistic continuous_genpareto continuous_genexpon continuous_genextreme continuous_gengamma continuous_genhalflogistic continuous_genhyperbolic continuous_geninvgauss continuous_gennorm continuous_gibrat continuous_gompertz continuous_gumbel_r continuous_gumbel_l continuous_halfcauchy continuous_halfnorm continuous_halflogistic continuous_hypsecant continuous_gausshyper continuous_invgamma continuous_invgauss continuous_invweibull continuous_johnsonsb continuous_johnsonsu continuous_ksone continuous_kstwo continuous_kstwobign continuous_laplace continuous_laplace_asymmetric continuous_levy_l continuous_levy continuous_logistic continuous_loglaplace continuous_loggamma continuous_lognorm continuous_loguniform continuous_maxwell continuous_mielke continuous_nakagami continuous_ncx2 continuous_ncf continuous_nct continuous_norm continuous_norminvgauss continuous_pareto continuous_lomax continuous_powerlognorm continuous_powernorm continuous_powerlaw continuous_rdist continuous_rayleigh continuous_rice continuous_recipinvgauss continuous_semicircular continuous_studentized_range continuous_t continuous_trapezoid continuous_triang continuous_truncexpon continuous_truncnorm continuous_truncweibull_min continuous_tukeylambda continuous_uniform continuous_vonmises continuous_wald continuous_weibull_max continuous_weibull_min continuous_wrapcauchy